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Collaborator
This talk is based on joint results with Sergey Morozov (LMU Munich).

The results presented in this talk can be found in two recent preprints on
arXiv.




Graphene is a single atomic layer of graphite, in which carbon atoms are

arranged in a honeycomb lattice.




Graphene

Zero gap semiconductor
]

The dispersion surfaces of the fully
occupied valence and totally empty Ef,
conduction bands touch at conical
(Dirac) points. (Wallace 1947, Fef-
ferman, Weinstein 2012)




The Coulomb-Dirac operator

Energy dispersion relation near the conical points
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Here v =~ 1O6m/s is the Fermi velocity. We choose units with Avp = 1.
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Impurity
Suppose now that the graphene sheet contains an attractive Coulomb
impurity of strength v. The effective Hamiltonian is then given by
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For v € [0,1/2] there exists a distinguished self-adjoint realization D, of
this differential expression.




The model

State space

Since the Fermi energy is zero, the space of physically available states is
P L2(R?; C2), where P is the spectral projector of D, to [0, ).

v

Perturbed Coulomb-Dirac operator in the Furry picture
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Consider an external potential V' given by a Hermitian matrix-valued
function. If it is not strong enough to substantially modify the Dirac sea,
the perturbed effective Hamiltonian takes the form

D,(V) := P (D, — V)P}.

Bound states
The negative spectrum of D, (V) may only consist of eigenvalues, which
can be interpreted as bound states of a quantum dot. Here we prove
estimates on these eigenvalues.
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Theorem 1 - Cwikel-Lieb-Rozenblum inequalities

Let v € [0,1/2). There exists CS*® > 0 such that

rank (D, (V))_ < CVCLR/ tr (V+(x))2dx.
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Theorem 2 - Virtual level at zero
Let
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Suppose that

IV[caxz € LY (R, (1 + r?)dr) and /Ooo <<_11>, V(r) (_11) >C2dr > 0.

Then the negative spectrum of Dy »(V) is non-empty.




Theorem 3 - Lieb-Thirring inequalities

Let v € [0,1/2] and v > 0. There exists ng > 0 such that

tr (D, (V) < G / tr (Vi (x)* ax.
RZ

For v = 1/2 the inequality in Theorem 3 is a Hardy-Lieb-Thirring
inequality.




Proofs of Theorems 1 and 3

@ For every v € [0,1/2) there exists C, > 0 such that

Dy > GV-A®1; (1)

holds.
@ For any A € [0, 1) there exists K\ > 0 such that

Dyl > (KO H(=APV2 =07 @ 1, (2)

holds for any ¢ > 0.




Thank you
for your attention!



