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Definition of SSF

For two self-adjoint operators H0 and H on a separable Hilbert space
H, M. G. Krĕın’s spectral shift function (SSF) ξ(λ) = ξ(λ;H ,H0) for
the pair (H ,H0) is defined by the trace formula

tr [f (H)− f (H0)] =

∫
R
ξ(λ)f ′(λ)dλ

(
= −

∫
R
ξ′(λ)f (λ)dλ

)
for any f ∈ C∞

0 (R) (cf. Krĕın 1953). If the spectrum of H and H0

are included in (−c ,∞) and (H + cI )−m − (H0 + cI )−m is in the
trace class for some c ∈ R, then SSF is defined via the equality

ξ(λ;H ,H0) =

{
−ξ((λ+ c)−m; (H + cI )−m, (H0 + cI )−m) (λ > −c),

0 (λ ≤ −c).
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SSF for Schrödinger operators

In the case H0 = −∆ and H = −∆+ V on Rd , a well-known
sufficient condition for the existence of SSF is

|V (x)| ≤ C ⟨x⟩−ρ, ⟨x⟩ = (1 + |x |2)1/2 (1)

for some C > 0 and ρ > d . It is also known that regularized SSF can
be defined under more mild decaying condition depending on the
dimension d . At least we always need the short range condition
ρ > 1.

Nice reviews: Birman-Yafaev 1992, Birman-Pushnitski 1998, Yafaev
2007.
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Birman-Krĕın formula

When ρ > d , the scattering matrix S(λ) = S(λ;H ,H0) exists and
S(λ)− I is in the trace class. Then the Birman-Krĕın formula

det S(λ) = exp(−2πiξ(λ)) (2)

holds for almost every λ > 0 (Birman-Krĕın 1962). If we write the
eigenvalues of S(λ) as e2iδλ,n (n = 1, 2, . . .), we have

ξ(λ) = − 1

π

∞∑
n=1

δλ,n. (3)

The RHS of (3) is absolutely summable when ρ > d . The number
δλ,n is called the phase shift when V is radial, since δλ,n is just the
asymptotic phase shift of some generalized eigenfunction for H .
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Magnetic Schrödinger operator

Next we consider the magnetic Schrödinger operator on R2

H =

(
1

i
∇− A

)2

, A = (A1,A2).

The corresponding magnetic field and the total magnetic flux are

B = curlA = ∂1A2 − ∂2A1, α =
1

2π

∫
R2

B(x)dx .

If the vector potential A satisfies

|A(x)|+ | divA(x)| ≤ C ⟨x⟩−ρ, ρ > 2, (4)

then we can also define SSF ξ(λ;H ,H0) (H0 = −∆) in a similar way.
However, (4) never holds when α ̸= 0, and we cannot define SSF in
the ordinary manner.
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Main result

Nevertheless, we can define similar quantity even if α ̸= 0, in the
following sense.

Theorem 1
Assume the magnetic field B is a real-valued C 1 function on R2 such
that

|B(x)| ≤ C ⟨x⟩−ρ, ρ > 3.

Let α =
∫
R2 B(x)dx/(2π) be the total magnetic flux, and Hα be the

Schrödinger operator for the Aharonov-Bohm magnetic field

Hα =

(
1

i
∇− Aα

)2

, Aα = α

(
− x2
|x |2

,
x1
|x |2

)
with the regular boundary condition at x = 0.
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Main result

Theorem 1 (continued)

Then, there exists a vector potential A with curlA = B , such that

lim
R→∞

tr [χR(f (H)− f (H0))χR ]

= −1

2
{α}(1− {α})f (0) +

∫
R
ξ(λ;H ,Hα)f

′(λ)dλ

for every f ∈ C∞
0 (R). Here χR is the characteristic function of the

disc {|x | ≤ R}, {α} = α− [α] is the fractional part of α, and
ξ(λ;H ,Hα) is the ordinary SSF for the pair (H ,Hα).

Similar results:

Borg 2006 (Ph. D. thesis) f = e−tλ, H = Hα, with Dirichlet b.c.

Tamura 2008 f ′ = 0 near the origin, χR is replaced by the
smooth cut-off function.
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SSF for Aharonov-Bohm magnetic field

The above result is formally interpreted as

ξ(λ;H ,H0) = ξ(λ;H ,Hα) + ξ(λ;Hα,H0),

ξ(λ;Hα,H0) =

{
1
2
{α}(1− {α}) (λ > 0),

0 (λ ≤ 0).

The eigenvalues of the scattering matrix S(λ) = S(λ;Hα,H0) are
e iαπ and e−iαπ (∞-deg.) (Ruijsenaars 1983, Adami-Teta 1998,
Roux-Yafaev 2002). Then Birman-Krĕın formula becomes

ξ(λ;Hα,H0) =

(
−{α}

2
− {α}

2
− {α}

2
− · · ·

)
+

(
{α}
2

+
{α}
2

+
{α}
2

+
{α}
2

+ · · ·
)
.

This equality does not make sense at all, but it also suggests us there
is some cancellation mechanism.
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Outline of Proof

The key tool for the proof of Theorem 1 is Pochhammer’s generalized
hypergeometric function

pFq (α1, . . . , αp; β1, . . . , βq; z) =
∞∑
n=0

Γ(α1 + n) · · · Γ(αp + n)

Γ(β1 + n) · · · Γ(βq + n)

zn

n!
.

Here we obey E. M. Wright’s notation. The asymptotic formula for

pFq has been studied from the beginning of 20th century (cf. Barnes
1907, Wright 1935, 1940, Braaksma 1962, Luke 1969, 1975, ...).
The asymptotic formula consists of algebraic series and exponential
series, whose coefficients can be explicitly calculated (at least by
Mathematica).
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Outline of Proof

Proposition 2

Let 0 < α < 1 and f ∈ C∞
0 (R). Then, we have

tr [χR (f (Hα)− f (H0))χR ] =

∫ ∞

0

ξα,R(λ)f
′(λ)dλ,

ξα,R(λ) = −Fα(
√
λR)− F1−α(

√
λR) + F0(

√
λR) + F1(

√
λR),

Fν(z) =
z2ν+4

8
√
π

2F3

(
ν + 1, ν +

3

2
; 2ν + 2, ν + 3, ν + 3;−z2

)
+
z2ν+2

4
√
π

2F3

(
ν +

1

2
, ν + 1; 2ν + 1, ν + 2, ν + 2;−z2

)
.
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Outline of Proof

Combining Proposition 2 and the asymptotic formula for 2F3, we
obtain more detailed asymptotics of the function ξα,R as follows.

Proposition 3
Let 0 < α < 1. Then we have

ξα,R(λ) =
1

2
α(1− α)− sinαπ

4π

cos(2
√
λR)√

λR

+
(2α + 1)(2α− 3) sinαπ

16π

sin(2
√
λR)

(
√
λR)2

+ O((
√
λR)−3),

as
√
λR → ∞.

The principal term coincides with Tamura’s one, but the next term
differs because of the difference of the formulation (Tamura uses the
smooth cut-off).
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