Non-existence of the wave operators for the repulsive Hamiltonians

Atsuhide ISHIDA Tokyo University of Science, Japan

Qmath13 Mathematical Results in Quantum Physics at Georgia Institute of Technology 2016 October 11

We consider the Schrödinger equation with the pair of Hamiltonians given by

$$H_0 = p^2 - x^2$$
, $H = H_0 + V$ on $L^2(\mathbb{R}^n)$ (1)

where $p = -i\nabla$ is the momentum and x^2 means $|x|^2$. The interaction potential $V \in L^{\infty}(\mathbb{R}^n)$ is real-valued multiplication operator. *V* will vanish when |x| is so large.

$$V(x) \to 0$$
 as $|x| \to \infty$. (2)

Known result

2005 Bony-Carles-Häfner-Michel¹ Under the following decay condition:

$$|V(x)| \le C(\log\langle x\rangle)^{-1-\epsilon}, \quad \epsilon > 0$$
(3)

where $\langle x \rangle = (1 + x^2)^{1/2}$, they proved the existence of the wave operators and their asymptotic completeness.

¹ J. Math. Pures Appl. **84** (2005)

Cook-Kuroda method

$$\int_{1}^{\infty} \|Ve^{-itH_{0}}\phi\|_{L^{2}}dt < \infty$$

$$\implies \text{s-lim}_{t \to \infty} e^{itH}e^{-itH_{0}} \text{ exists.}$$
(4)

$$\begin{aligned} \|(e^{it_{1}H}e^{-it_{1}H_{0}} - e^{it_{2}H}e^{-it_{2}H_{0}})\phi\|_{L^{2}} \\ &= \|\int_{t_{2}}^{t_{1}} \partial_{t}(e^{itH}e^{-itH_{0}})\phi dt\|_{L^{2}} \\ &\leqslant \int_{t_{2}}^{t_{1}} \|Ve^{-itH_{0}}\phi\|_{L^{2}}dt \longrightarrow 0 \quad \text{as} \quad t_{1}, t_{2} \longrightarrow \infty(5) \end{aligned}$$

The case of the free Schrödinger operator : $p^2 = -\Delta$

If we write the decay condition on V as

$$|V(x)| \le C \langle x \rangle^{-\rho} \tag{6}$$

with $\rho > 0$,

 $\rho > 1 \Longrightarrow$ the wave operators exist, (short-range) $\rho \le 1 \Longrightarrow$ the wave operators do not exist. (long-range)

That is to say, the borderline is $\rho = 1$.

The classical trajectory of the particle of the free Schrödinger has order

$$x(t) = O(t)$$
 as $t \to \infty$. (7)

By substituting the classical order,

$$\int_{1}^{\infty} \|Ve^{-itH_{0}}\phi\|_{L^{2}}dt = \int_{1}^{\infty} \|V(x(t))e^{-itH_{0}}\phi\|_{L^{2}}dt$$
$$\leq C \int_{1}^{\infty} t^{-\rho}dt < \infty \iff \rho > 1.$$
(8)

The case of the repulsive
$$H_0 = p^2 - x^2$$

By solving the Newton equation $\ddot{x}(t)/2 = 2x(t)$, the classical order is

$$x(t) = O(e^{2t}) \quad \text{as} \quad t \to \infty.$$
 (9)

When we impose the decay condition on V by

$$|V(x)| \le C(\log\langle x \rangle)^{-\rho}, \tag{10}$$

we can expect that the borderline will be

$$\rho = 1 \tag{11}$$

because of the analogy before.

Theorem² Let the potential V be defined as $V(x) = \lambda (\log(2 + |x|))^{-\rho}$ (12)with $0 \neq \lambda \in \mathbb{R}$ and $0 < \rho \leq 1$. For $H = H_0 + V$, the wave operators s-lim $e^{itH}e^{-itH_0}$ (13) $t \rightarrow +\infty$ do not exist.

²J. Math. Anal. Appl. **438** (2016)