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Interacting fermions in the mean-field regime

Consider N interacting (non-relativistic, quantum mechanical)
fermions in Rd . We want to understand the system in the limit
where N is large.
Configuration space: ∧NL2(Rd) (anti-symmetry due to Pauli
principle).
Hamiltonian in the mean-field regime:

HN :=
N∑
j=1

([−i∇j

N
1
d

+ A(xj)
]2

+ V (xj)

)
+

1

N

∑
1≤k<`≤N

w(xk − x`),

Ground state energy

E (N) = inf SpecHN .



HN :=
N∑
j=1

[−i∇j

N
1
d

+ A(xj)
]2

+
N∑
j=1

V (xj) +
1

N

∑
1≤k<`≤N

w(xk − x`),

OBS. The Lieb-Thirring inequality gives for functions localized in a
bounded domain Ω,

N∑
j=1

∫
ΩN

|∇jΨ|2 ≥ C |Ω|−
2
d N1+ 2

d .

This dictates the semiclassical factor ~ = N−1/d in front of the
gradient in order for all three terms in the Hamiltonian to be
morally of the same order (N).
This is the regime where one can reasonably expect a mean-field
limit to be correct.
A given physical system can sometimes be described in this form
(after scaling). This is famously the case for atoms (Lieb &
Simon) and fermion stars (Lieb & Thirring and Lieb & Yau).



The case of atoms (Lieb&Simon)

An atom with N interacting electrons (coordinates xj ∈ R3) and
nuclear charge Z = zN.

Hatoms =
∑
j

(−∆j − zN|xj |−1) +
∑
j<k

|xj − xk |−1

= N4/3
(∑

j

(−~2∆yj − z |yj |−1) + N−1
∑
j<k

|yj − yk |−1
)

with yj = N1/3xj , ~ = N−1/3.
Ground state energy is given by (Lieb&Simon)

inf SpecHatoms = N7/3eatoms
TF + o(Z 7/3).

Higher order correction terms have been proved

Scott-correction O(Z 2) (Siedentop-Weikard, Ivrii-Sigal)

Dirac-Schwinger term O(Z 5/3) (Fefferman-Seco).



Vlasov and Thomas-Fermi energies

The Vlasov energy

EV ,AVla (m) =
1

(2π)d

∫
R2d

|p+A(x)|2m(x , p) dx dp+

∫
Rd

V (x)ρm(x) dx

+
1

2

∫∫
Rd×Rd

w(x − y)ρm(x) ρm(y) dx dy .

Here m(x , p) is a probability measure on the phase space Rd × Rd

ρm(x) =
1

(2π)d

∫
Rd

m(x , p) dp,

and
0 ≤ m(x , p) ≤ 1 a.e.

This condition says that one cannot put more than one particle at
x with a momentum p and it is inherited from the Pauli principle.



Vlasov and Thomas-Fermi energies II

With the fermionic constraint, the optimal choice of m(x , p) for a
given ρ(x) is

mρ(x , p) = 1{|p+A(x)|2≤cTF ρ(x)2/d}

This leads to the Thomas-Fermi energy

EVTF(ρ) := EV ,AVla (mρ) =
d

d + 2
cTF

∫
Rd

ρ(x)1+ 2
d dx+

∫
Rd

V (x)ρ(x) dx

+
1

2

∫∫
Rd×Rd

w(x − y)ρ(x) ρ(y) dx dy

and where

cTF = 4π2
( d

|Sd−1|
) 2
d .



Theorem (Convergence of the ground state energy)

Assume that w is even and that w ,V , |A|2 ∈ L1+d/2 + L∞ε
(or V confining). Then we have

lim
N→∞

E (N)

N
= eVTF(1).

Here the Thomas-Fermi energy is,

eVTF(1) := inf

{
EVTF (ρ) : 0 ≤ ρ ∈ L1 ∩ L1+2/d(Rd),

∫
Rd

ρ = 1

}
= inf

0≤m≤1
(2π)−d

∫
R2d m=1

EV ,AVlas(m).



Semiclassical measures

Let f ∈ L2(Rd) be real-valued. Define

f ~x ,p(y) = ~−
d
4 f
( y−x√

~

)
e i

p·y
~ ,

where we recall that ~ = N−1/d . Then we have the resolution of
the identity in L2(Rd)

(2π~)−d
∫
Rd

∫
Rd

|f ~x ,p〉〈f ~x ,p| dx dp = 1.

For any such f and a fermionic N-particle state ΨN , we introduce
the corresponding k-particle Husimi function

m
(k)
f ,ΨN

(x1, p1, ..., xk , pk)

:=
〈

ΨN , a
∗(f ~x1,p1

) · · · a∗(f ~xk ,pk )a(f ~xk ,pk ) · · · a(f ~x1,p1
)ΨN

〉
,

for k = 1, ...,N, where a and a∗ are the fermionic annihilation and
creation operators.



Semiclassical measures

Lemma (Elementary properties of the phase space measures)

For every 1 ≤ k ≤ N, the function m
(k)
f ,ΨN

is symmetric and satisfies

0 ≤ m
(k)
f ,ΨN

≤ 1 a.e. on R2dk ,

and

1

(2π)dk

∫
R2dk

m
(k)
f ,ΨN

(x1, p1, ..., xk , pk) dx1 · · · dpk

= N(N − 1) · · · (N − k + 1)~dk ,
1

(2π)d

∫
R2d

m
(k)
f ,ΨN

(x1, p1, ..., xk , pk) dxk dpk

= ~d(N − k + 1)m
(k−1)
f ,ΨN

(x1, p1, ..., xk−1, pk−1).



Semiclassical measures

Fermionic annihilation and creation operators:{
a∗(f )a(g) + a(g)a∗(f ) = 〈g , f 〉,
a∗(f )a∗(g) + a∗(g)a∗(f ) = 0.

Equivalently,

m
(k)
f ,ΨN

(x1, p1, ..., xk , pk)

=
N!

(N − k)!

〈
ΨN ,

(
P~
x1,p1
⊗ · · · ⊗ P~

xk ,pk
⊗ 1N−k

)
ΨN

〉
L2(RdN)

where P~
x ,p := |f ~x ,p〉〈f ~x ,p| is the orthogonal projection onto f ~x ,p.



Theorem (Convergence of states, confined case)

Extra assumption to the energy theorem: lim|x |→∞ V+(x) = +∞.
Let {ΨN} ⊂

∧N L2(Rd) be any sequence such that ‖ΨN‖ = 1 and

〈ΨN ,HNΨN〉 = E (N) + o(N).

Then there exists a subsequence {Nj} and a probability measure P
on the set of all the minimizers of the TF functional

M =

{
0 ≤ ρ ∈ L1 ∩ L1+2/d(Rd) :

∫
Rd

ρ = 1, EVTF(ρ) = eVTF(1)

}
such that the following limit holds:∫

R2dk

m
(k)
f ,ΨNj

φ→
∫
M

(∫
R2dk

(mρ)⊗kφ

)
dP(ρ)

for every test function φ ∈ L1(R2dk) + L∞(R2dk).



Theorem (Convergence of states, continued)

Furthermore, we have the convergence of the k-particle probability
density∫
Rd

· · ·
∫
Rd

|ΨNj
(x1, ..., xNj

)|2 dxk+1 · · · dxNj
→
∫
M

k∏
j=1

ρ(xj) dP(ρ)

weakly in L1(Rd) ∩ L1+ 2
d (Rd) for k = 1, and weakly-∗ in the sense

of measures for k ≥ 2.
Finally, we have the convergence of the k-particle kinetic energy
density∫
Rd

· · ·
∫
Rd

∣∣∣F~[ΨNj
](p1, ..., pNj

)
∣∣∣2 dpk+1 · · · dpNj

→
∫
M

k∏
`=1

∣∣∣{ρ ≥ |p` + A|dc−d/2
TF

}∣∣∣ dP(ρ),

weakly-∗ in the sense of measures for k ≥ 1.



In the last statement,

F~[f ](p) :=
1

(2π~)d/2

∫
Rd

f (x)e−i
p·x
~ dx

is the ~-dependent Fourier transform.

The result says that, in the limit N →∞, the many-body
approximate minimizers ΨN become purely semi-classical to
leading order and that the corresponding semi-classical measures
are a convex combination of factorized states involving the Vlasov
minimizers mρ with ρ ∈M. Note that if the Thomas-Fermi energy
has a unique minimizer ρ0, then there is no need to extract
subsequences and the probability measure P has to be a delta
measure at ρ0.



The unconfined case

In the unconfined case we have a similar result, except that the
limits are a priori local. Since some of the particles can escape to
infinity, our result will involve the minimizers of the problems
eVTF(λ) for a mass 0 ≤ λ ≤ 1.

Recall:

eVTF(λ) := inf

{
EVTF (ρ) : 0 ≤ ρ ∈ L1(Rd) ∩ L1+2/d(Rd),

∫
Rd

ρ = λ

}
,

EVTF(ρ) =
d

d + 2
cTF

∫
Rd

ρ(x)1+ 2
d dx +

∫
Rd

V (x)ρ(x) dx

+
1

2

∫∫
Rd×Rd

w(x − y)ρ(x) ρ(y) dx dy



Theorem (Convergence of states, unconfined case)

Assumptions as for energy convergence, plus

V+ ∈ L1+d/2(Rd) + L∞ε (Rd).

Let {ΨN} ⊂
∧N L2(Rd) be any sequence such that ‖ΨN‖ = 1 and

〈ΨN ,HNΨN〉 = E (N) + o(N).
Then there exists a subsequence {Nj} and a probability measure P
on the set

M =

{
0 ≤ ρ ∈ L1(Rd) ∩ L1+2/d(Rd) :

∫
Rd

ρ ≤ 1,

EVTF(ρ) = eVTF

(∫
Rd

ρ
)

= eVTF(1)− e0
TF

(
1−

∫
Rd

ρ
)}

To be continued...



Theorem (Continued)

such that ∫
R2dk

m
(k)
f ,ΨNj

φ→
∫
M

(∫
R2dk

(mρ)⊗kφ

)
dP(ρ)

for every test function φ ∈ L1(R2dk) + L∞ε (R2dk).

A similar convergence result holds for the k-particle density
but is not known for the k-particle kinetic energy density.

Notice that M is the set of all the possible weak limits of
minimizing sequences for the Thomas-Fermi problem.



In the unconfined case some particles may be lost at infinity (if not
all), and the limiting minimizing densities ρ might not be
probability measures. Nevertheless, the result says that the
remaining particles must solve the minimization problem eVTF(

∫
ρ),

corresponding to the fraction
∫
Rd ρ of the N particles which have

not escaped to infinity. Furthermore, if no particle is lost
(
∫
Rd ρ = 1 on M), then the convergence is the same as in the

confined case.



Structure of measures for large N

Theorem (Convergence to factorized measures on phase space)

Let ΨN be a seq. of normalized fermionic functions, ~ = N−1/d .
Then, there exists a subseq. Nj and a probability measure P on

B =

{
µ ∈ L1(R2d) : 0 ≤ µ ≤ 1, (2π)−d

∫
R2d

µ ≤ 1

}
such that, for every k ≥ 1,∫

R2dk

m
(k)
f ,ΨNj

φ→
∫
B

(∫
R2dk

µ⊗kφ

)
dP(µ),

for every normalized, real-valued function f ∈ L2(Rd) and every
φ ∈ L1(R2dk) + L∞ε (R2dk).



The confined case

For an arbitrary sequence (ΨN), the functions (m
(k)
f ,ΨN

)N≥k are

bounded in L1(R2dk) ∩ L∞(R2dk), for every fixed k .
Clearly up to a subsequence (and a diagonal sequence argument)∫

R2dk

m
(k)
f ,ΨN

φ→
∫
R2dk

m
(k)
f φ

for every φ ∈ L1(R2dk) + L∞ε (R2dk).

In the limit we obtain a family of symmetric functions (m
(k)
f )k≥1.

Some mass can be lost at infinity, so
∫
m

(k)
f ≤ 1.

However, if the sequence (m
(1)
f ,ΨN

) is tight, that is,

lim
R→∞

lim sup
N→∞

∫
|x |+|p|≥R

m
(1)
f ,ΨN

(x , p) dx dp = 0,

then the m
(k)
f ,ΨN

are also tight for k ≥ 2 and the limiting m
(k)
f are

all probability measures.



Using the tightness, we get the consistency condition, for all k ≥ 1:

1

(2π)d

∫
R2d

m(k)(x1, ..., xk , pk) dxk dpk = m(k−1)(x1, ..., xk−1, pk−1)

The famous de Finetti-Hewitt-Savage theorem deals with the
structure of such infinite sequences of symmetric probability
measures. In our situation, the result can be stated as follows.

Theorem (Fermionic semi-classical measures on phase space)

Let m(k) be a consistent family of symmetric positive densities in
L1(Mk), with M ⊂ RD , with m(0) = 1 and 0 ≤ m(k) ≤ 1.
Then there exists a Borel probability measure P on the set

S :=

{
µ ∈ L1(M) : 0 ≤ µ ≤ 1, (2π)−d

∫
M
µ = 1

}
such that, for all k ≥ 1,

m(k) =

∫
S
µ⊗k dP(µ),



Proof.

The usual theorem furnishes a probability measure P on the set
P(M) of all the Borel probability measures on M such that the
conclusion holds with S replaced by P(M).
We therefore only have to prove that this measure P has its
support on S, which can be identified as a subset of P(M). The
assumption that 0 ≤ m(k) ≤ 1 implies m(k)(Ak) ≤ |A|k for any
Borel set A ⊂ M, and this gives (for all k)∫

P(M)

(
µ(A)

|A|

)k

dP(µ) ≤ 1.

Taking k →∞ proves that P is supported on the subset of P(M)
containing all the probability measures µ such that µ(A) ≤ |A| for
all Borel sets A.
These measures are absolutely continuous with respect to Lebesgue
measure and the corresponding density is between 0 and 1.


