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Interacting fermions in the mean-field regime

Consider N interacting (non-relativistic, quantum mechanical)
fermions in R9. We want to understand the system in the limit
where N is large.

Configuration space: ANL2(RY) (anti-symmetry due to Pauli
principle).

Hamiltonian in the mean-field regime:

N .
Hui= Y- ([ 4+ AL + Vi) + Wl ).

=1 Ne

Ground state energy

E(N) = inf Spec Hy.
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OBS. The Lieb-Thirring |nequa||ty gives for functions localized in a
bounded domain €,
N

> [ el = clap i,
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This dictates the semiclassical factor 7 = N~'/? in front of the
gradient in order for all three terms in the Hamiltonian to be
morally of the same order (N).

This is the regime where one can reasonably expect a mean-field
limit to be correct.

A given physical system can sometimes be described in this form
(after scaling). This is famously the case for atoms (Lieb &
Simon) and fermion stars (Lieb & Thirring and Lieb & Yau).




The case of atoms (Lieb&Simon)

An atom with N interacting electrons (coordinates x; € R3) and
nuclear charge Z = zN.

s = S Mgl + 3 gl
J j<k
= N3 (SR, = 2y )+ MY by = el )
J i<k
with y; = NY3x;, h = N~Y/3,
Ground state energy is given by (Lieb&Simon)
inf Spec Ht™Ms — N7/3'e5’rtﬁmS + o(Z7/3).
Higher order correction terms have been proved
o Scott-correction O(Z2) (Siedentop-Weikard, Ivrii-Sigal)
o Dirac-Schwinger term O(Z5/3) (Fefferman-Seco).



Vlasov and Thomas-Fermi energies

The Vlasov energy

8\‘,/1’;4(m) = # /]R2d |p+A(x)|2m(x, p) dx dp—i—/Rd V(x)pm(x) dx

* % //Rded w(x = y)pm(x) pm(y) dx dy.

Here m(x, p) is a probability measure on the phase space RY x RY

1
pm(x) = 2ny /Rd m(x, p) dp,

and

0<m(x,p) <1 ae.

This condition says that one cannot put more than one particle at
x with a momentum p and it is inherited from the Pauli principle.



Vlasov and Thomas-Fermi energies |l

With the fermionic constraint, the optimal choice of m(x, p) for a
given p(x) is

mp(X, P) = Lo a)<crr p(x)2/9}

This leads to the Thomas-Fermi energy
d 2
1% _ VA _ 1+2
ter) = &0my) = e [ ol dxs [ V()
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+5 / / w(x = y)p(x) p(y) dx dy
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and where
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Theorem (Convergence of the ground state energy)

Assume that w is even and that w, V, |A]? € L}+9/2 4 [
(or V confining). Then we have

im, i = )

Here the Thomas-Fermi energy is,

eYp(1) := inf {5¥,.—(p) c 0< peltnMARY, / p= 1}
Rd

. V,A
= inf Eol(m).
0<m<1 Vlas( )
(27l')7d fde m=1



Semiclassical measures

Let f € L?(R?) be real-valued. Define
x\ _jPY
o) = W8 (£)el,
where we recall that i = N~1/9. Then we have the resolution of

the identity in L2(RY)
(2mh)~¢ / / V(" dxdp = 1.
R JRE ’

For any such f and a fermionic N-particle state Wy, we introduce
the corresponding k-particle Husimi function

k
m$'7\}JN(X17 P1y -y Xk Pk)

<\UN’ *( X1, Pl) ’ (Xk Pk)a( Xk, Pk) (ﬂz Pl)\UN>’

for k=1,...,N, where a and a* are the fermionic annihilation and
creation operators.



Semiclassical measures

Lemma (Elementary properties of the phase space measures)

For every 1 < k < N, the function mffk\{,m is symmetric and satisfies

k)

0< m,(w,N <1 a.e. on Rde,

and

- 1 k
(271-)dk /]R2dk m(f,\zm(xl’ P1; -5 Xk pk) dxq - - - dpg
= N(N =1)--(N = k+1)h%,
1
(2m)d

/ f\uN(Xl pla"'JXk7pk) ka dpk

= hd(N —k+ l)m(flj\;,:)(xl, P1y -y Xk—1, Pk—l)-



Semiclassical measures

Fermionic annihilation and creation operators:

{a*(f)a(g) +a(g)a*(f) = (g. ),
a*(f)a*(g) + a*(g)a*(f) = 0.

Equivalently,
mf \UN(Xl P1y -y Xk, Pk)

NI
<WN’(PX1 P1 ®P>}<ik pk®]lN—k) wN>

~(N—k)! 12(Ramy

where = is the orthogonal projection onto .
here P!, := |l )(f]' | is the orth | t to £l



Theorem (Convergence of states, confined case)

Extra assumption to the energy theorem: lim|,|_,., V4 (x) = +o0c.
Let {Wn} € A" L2(RY) be any sequence such that |Wy|| = 1 and

(Wn, HhW ) = E(N) + o(N).

Then there exists a subsequence {N;} and a probability measure P
on the set of all the minimizers of the TF functional

m={ospernurim) ; [ p=1, chin=ch(v)

such that the following limit holds:

/ %6 = / ( / )%) dP(p)

for every test function ¢ € L}(R29k) 4 [>°(IR24k).



Theorem (Convergence of states, continued)

Furthermore, we have the convergence of the k-particle probability
density

K
/Rd /Rd| Ny (X5 o XN )| dXr - - -y, — /MHP(XJ) dP(p)

weakly in LY(R9) N L1+%(]Rd) for k = 1, and weakly-x in the sense
of measures for k > 2.

Finally, we have the convergence of the k-particle kinetic energy
density

/Rd”./Rd ‘]:h[wl\lj](Pl,...

- [ H) o2 lpe+ Aler?}| aP(),

weakly-x in the sense of measures for k > 1.

2
dpk+1- - dpn,




In the last statement,

Filfl(p) = wlw |, Fee 7

is the h-dependent Fourier transform.

The result says that, in the limit N — oo, the many-body
approximate minimizers Wy become purely semi-classical to
leading order and that the corresponding semi-classical measures
are a convex combination of factorized states involving the Vlasov
minimizers m, with p € M. Note that if the Thomas-Fermi energy
has a unique minimizer pg, then there is no need to extract
subsequences and the probability measure P has to be a delta
measure at po.



The unconfined case

In the unconfined case we have a similar result, except that the
limits are a priori local. Since some of the particles can escape to
infinity, our result will involve the minimizers of the problems
er}/F(A) foramass 0 < A < 1.

Recall:

eXe()) = inf {5¥F(p) 0 < pe lYRY) N LR, /Rd p= )\} :
d
5¥F(P) = d+2

CTF /Rd p(x)' " dx—i—/Rd V(x)p(x) dx
1

+5 / /R . w(x = y)p(x) ply) dx dy



Theorem (Convergence of states, unconfined case)

Assumptions as for energy convergence, plus
Vi e LY92(RY) + [2°(RY).

Let {Wpn} c AN L2(R?) be any sequence such that |Wy| =1 and
<WN7 HN\UN> = E(N) + O(N)

Then there exists a subsequence {N;} and a probability measure P
on the set

M = {0 < p e YRY) N LH4RY) - / p <1,
Rd

5¥F(P) :6¥F</Rd’0> :e%/F(l)—e%F(l—/RdP)}

To be continued...



Theorem (Continued)

such that
Lomo= | ( L )%) P()

for every test function ¢ € L}(R29k) 4 [>°(IR24k).

@ A similar convergence result holds for the k-particle density
but is not known for the k-particle kinetic energy density.

o Notice that M is the set of all the possible weak limits of
minimizing sequences for the Thomas-Fermi problem.



In the unconfined case some particles may be lost at infinity (if not
all), and the limiting minimizing densities p might not be
probability measures. Nevertheless, the result says that the
remaining particles must solve the minimization problem e¥F(f ),
corresponding to the fraction fRd p of the N particles which have
not escaped to infinity. Furthermore, if no particle is lost

(Jga p =1 on M), then the convergence is the same as in the
confined case.



Structure of measures for large N

Theorem (Convergence to factorized measures on phase space)

Let Wy be a seq. of normalized fermionic functions, h = N~1/9,
Then, there exists a subseq. N; and a probability measure P on

B:{MGLI(RN) 0< <, (27T)_d/ ,ugl}
R2d
such that, for every k > 1,

Lo [([n%s) e

for every normalized, real-valued function f € L?(R9) and every
¢ c Ll(dek) + LSO(RMk)_



The confined case

For an arbitrary sequence (Vy), the functions (m,(clf\?,N)Nzk are
bounded in L!(IR24k) 0 L>°(R2K), for every fixed k.
Clearly up to a subsequence (and a diagonal sequence argument)

fWN(b_)/

for every ¢ € Ll(dek) + L (R29K).

In the limit we obtain a family of symmetric functions (m,(,k))kzl.
Some mass can be lost at infinity, so fm(fk) <1.

However, if the sequence (mfc\)u ) is tight, that is,

lim I|msup/ m(fl\)l, (x,p)dxdp =0,
R—=00 N—oo Jx|+|p|>R
then the m,(ca, are also tight for kK > 2 and the limiting m(fk) are

all proba b|||ty measures.



Using the tightness, we get the consistency condition, for all kK > 1:

1
(2m)d
The famous de Finetti-Hewitt-Savage theorem deals with the

structure of such infinite sequences of symmetric probability
measures. In our situation, the result can be stated as follows.

/Zd M8 (x1, ooy X, i) dxk dpke = mE D (xq, ooy X1, Pr—1)
R

Theorem (Fermionic semi-classical measures on phase space)

Let m'%) be a consistent family of symmetric positive densities in
LY(M*), with M c RP, with m(® =1 and 0 < m(k) < 1.
Then there exists a Borel probability measure P on the set

S::{MELI(M) S 0<pu<l, (27r)—d/M,,L:1}

such that, for all k > 1,
m®) = [ i ap().



The usual theorem furnishes a probability measure P on the set
P(M) of all the Borel probability measures on M such that the
conclusion holds with S replaced by P(M).

We therefore only have to prove that this measure P has its
support on S, which can be identified as a subset of P(M). The
assumption that 0 < m(k) < 1 implies m(k)(Ak) < |A|¥ for any
Borel set A C M, and this gives (for all k)

/P(M) (%)k dP(p) < 1.

Taking k — oo proves that P is supported on the subset of P(M)

containing all the probability measures p such that p(A) < |A| for

all Borel sets A.

These measures are absolutely continuous with respect to Lebesgue
measure and the corresponding density is between 0 and 1. [



