On Proper Dissipative Extensions

Christoph Fischbacher joint work with Sergey Naboko (St. Petersburg) and Ian Wood (Kent)

University of Alabama at Birmingham

cfischb@uab.edu

October 10, 2016

Definition (Dissipative operator)

Let A be a densely defined operator on a Hilbert space \mathcal{H} . We say that A is *dissipative* if and only if

$$\mathsf{Im}\langle\psi,A\psi
angle\geq 0$$
 for all $\psi\in\mathcal{D}(A)$.

Definition (Dual pairs of operators and proper extensions)

Let (A, B) be a pair of densely defined and closable operators. We say that they form a *dual pair* if

$$A \subset B^*$$
 resp. $B \subset A^*$.

An extension A' of A is called a *proper* extension of the dual pair (A, B) if $A \subset A' \subset B^*$.

Remarks: Note that every dissipative operator is closable. Examples:

- Let S be symmetric and T be bounded. Then $(S + T, S + T^*)$ is a dual pair and for example S' + T would be a proper extension, where S' is a symmetric extension of S.
- Let A be a densely defined and closed operator. Then (A, A^*) is a dual pair and there is no non-trivial proper extension.

Given a dual pair of operators (A, B), where A and (-B) are dissipative, how can we determine whether a proper extension A' of (A, B) is dissipative?

Motivation: singular differential operators like

•
$$i\frac{d}{dx} + i\frac{\gamma}{x}$$
 on $L^2(0,1)$ with $\gamma > 0$.
• $-\frac{d^2}{dx^2} + i\frac{\gamma}{x^2}$ on $L^2(0,1)$, where $\gamma > 0$.

Definition (The common core property)

Let (A, B) be a dual pair of closed operators. We say that it has the common core property property if there exists a subspace $\mathcal{D} \subset \mathcal{D}(A) \cap \mathcal{D}(B)$ that is a core for both operators, i.e. if

$$A = \overline{A \upharpoonright_{\mathcal{D}}}$$
 and $B = \overline{B \upharpoonright_{\mathcal{D}}}$.

Remark:

If (A, B) has the common core property, then the closures of N(A) and N(B) are complex conjugates.

Examples:

- Let S be closed and symmetric. The dual pair (S, S) has the common core property.
- Let S be closed and symmetric and $V \ge 0$ be bounded. The dual pair (S + iV, S iV) has the common core property.
- Let $L_{-}f(x) := -if''(x) \gamma \frac{f(x)}{x^2}$ and $L_{+}f(x) := if''(x) \gamma \frac{f(x)}{x^2}$. The dual pair of operators $(\overline{A_{-}}, \overline{A_{+}})$, where

$$A_{\mp}: \quad \mathcal{D}(A_{\mp}) = \mathcal{C}_{c}^{\infty}(0,1)$$
$$f \mapsto L_{\mp}f$$

has the common core property by construction.

Main result

Some notation and assumptions:

- Let A be dissipative and (A, B) have the common core property and let \mathcal{D} denote a common core.
- Let \mathcal{V} be a subspace of $\mathcal{D}(B^*)$ such that $\mathcal{D}(A) \cap \mathcal{V} = \{0\}$. With $A_{\mathcal{V}}$ we mean the operator

$$egin{aligned} \mathcal{A}_\mathcal{V} &: \quad \mathcal{D}(\mathcal{A}_\mathcal{V}) = \mathcal{D}(\mathcal{A}) \dot{+} \mathcal{V} \ \mathcal{A}_\mathcal{V} &= \mathcal{B}^* \upharpoonright_{\mathcal{D}(\mathcal{A}_\mathcal{V})} \end{aligned}$$

- The "imaginary part" V is defined to be the closure of $\frac{1}{2i}(A-B) \upharpoonright_{\mathcal{D}}$.
- V_K denotes the self-adjoint Kreĭn-von Neumann extension of V. (Recall that for V ≥ ε > 0, we have D(V_K) = D(V)+ ker V*.)

Theorem

 $\mathcal{A}_\mathcal{V}$ is dissipative if and only if $\mathcal{V} \subset \mathcal{D}(V_\mathcal{K}^{1/2})$ and

$$\operatorname{Im}\langle v,B^*v
angle\geq \|V_{\mathcal{K}}^{1/2}v\|^2 \quad ext{for all } v\in \mathcal{V} \ .$$

Christoph Fischbacher (UAB)

A first order example

Let $\mathcal{H} = L^2(0,1)$, $0 < \gamma < 1/2$ and consider the dual pair of operators:

With $A := \overline{A_{0,+}}$ and $B := \overline{A_{0,-}}$, the dual pair (A, B) has the common core property. It can be shown that

$$\mathcal{D}(B^*) = \mathcal{D}(A) + \operatorname{span}\{x^{-\gamma}, x^{\gamma+1}\}$$
.

The imaginary part $\frac{1}{2i}(A - B)$ is the essentially self-adjoint multiplication operator by γx^{-1} on $C_c^{\infty}(0, 1)$. Thus, $V_K^{1/2}$ is just the maximal multiplication operator by $\sqrt{\gamma} x^{-1/2}$. Since $x^{-\gamma} \notin \mathcal{D}(V_K^{1/2})$, the only possible candidate for a maximally dissipative extension of A is $x^{\gamma+1}$ and it can be checked that it is indeed.

A second order example

Let $\mathcal{H} = L^2(0,1)$, $\gamma \geq \sqrt{3}$ and consider the dual pair of operators:

$$\begin{aligned} A_{0,\pm} : \quad \mathcal{D}(A_{0,\pm}) &= \mathcal{C}^{\infty}_{c}(0,1) \\ (A_{0,\pm}f)(x) &= \pm i f''(x) - \frac{\gamma}{x^{2}} f(x) \,. \end{aligned}$$

Define $A := \overline{A_{0,-}}$ and $B := \overline{A_{0,+}}$. A calculation shows that

$$\mathcal{D}(B^*) = \mathcal{D}(A) \dot{+} \operatorname{span} \left\{ x^{\omega}, x^{\overline{\omega}+2}
ight\} ,$$

where $\omega = (1 + \sqrt{1 + 4i\gamma})/2$. The "imaginary part" is $V = -\frac{d^2}{dx^2}$ with domain $C_c^{\infty}(0, 1)$ and it can be shown that $\mathcal{D}(V_K^{1/2}) = H^1(0, 1)$ and

$$\|V_{K}^{1/2}f\|^{2} = \|f'\|^{2} - |f(1) - f(0)|^{2}$$

By an elementary linear transformation, we can construct functions $\psi(x)$ and $\phi(x)$ such that

$$\operatorname{span}\{x^\omega,x^{\overline\omega+2}\}=\operatorname{span}\{\psi,\phi\}$$

and $\psi(1) = \phi'(1) = 1$ as well as $\psi'(1) = \phi(1) = 0$. Applying the theorem, we find that the operators A_{ρ} given by

$$egin{aligned} \mathcal{A}_
ho &\colon & \mathcal{D}(\mathcal{A}_
ho) = \mathcal{D}(\mathcal{A}) \dot{+} \mathsf{span}\{
ho\psi + \phi\}, \quad \mathcal{A}_
ho = \mathcal{B}^* \restriction_{\mathcal{D}(\mathcal{A}_
ho)} \mathcal{D}(\mathcal{A}_
ho) \end{aligned}$$

are dissipative if and only if

$$|
ho - 1/2| \ge 1/2$$
 .

C. F., S. Naboko, and I. Wood: The Proper Dissipative Extensions of a Dual Pair, Integr. Equ. Oper. Theory, August 2016, Volume 85, Issue 4, pp 573–599.

Thanks for your attention!