The Complete Set of Infinite Volume Ground States for Kitaev's Abelian Quantum Double Models

1

Matthew Cha

Department of Mathematics, UC Davis

joint work with Pieter Naaijkens and Bruno Nachtergaele

QMath13, October 10, 2016

・ロト・日本・モート モー うへぐ

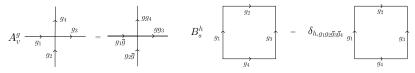
Kitaev's Quantum Double Model (Kitaev, 2003)

Let G be a finite group and \mathcal{B} the bond set of \mathbb{Z}^2 . For $e \in \mathcal{B}$, assign a |G|-dimensional Hilbert space with an orthonormal basis labeled g.

Interaction terms are defined for each star v and plaquette f by

$$A_v = rac{1}{|G|} \sum_{g \in G} A_v^g,$$
 and $B_f = B_f^e,$

where



The local Hamiltonian for $\Lambda \subset \mathcal{B}$ a finite subset is:

$$H_{\Lambda} = \sum_{v \in \mathcal{V}_{\Lambda}} (I - A_v) + \sum_{f \in \mathcal{F}_{\Lambda}} (I - B_f)$$

When $G = \mathbb{Z}_2$ this is the well known toric code model. Some general properties of the q.d. models include:

- The interactions terms form a commuting family of projectors.
- The space of ground states is frustration-free and topologically ordered, when defined on a surface of genus g the ground state degeneracy only depends on g, local observables cannot distinguish between ground states (local topological quantum order).
- Excitations occur when one of the f.f. conditions are violated. Ribbon operators generate excitations at their endpoints from a ground state. The excitations are anyons, that is, they obey braided statistics. If G is abelian, they can be labeled by a pair (χ, c) ∈ G × G, where G is the group of characters.

Thermodynamic Limit

The quasi-local algebra of observables is

$$\mathcal{A} = \overline{\bigcup_{\Lambda \subset_f \mathcal{B}} \mathcal{A}_{\Lambda}}^{\|\cdot\|}$$
 where $\mathcal{A}_{\Lambda} = \bigotimes_{e \in \Lambda} M_2(\mathbb{C}).$

The dynamics is given by a one-par. group of automorphisms of A,

$$au_t = e^{it\delta}$$
 where $\delta(\cdot) = \lim_{L o \infty} [H_{\Lambda_L}, \cdot]$

where the limit is in the strong sense and Λ_L is any monotone sequence absorbing \mathcal{B} , e.g., Λ_L is the bond set of $[-L, L]^2$. The local algebra of observables, $\mathcal{A}_{loc} = \bigcup_{\Lambda \subset \epsilon \mathcal{B}} \mathcal{A}_{\Lambda}$ is a core for δ . A state is a linear functional $\omega : \mathcal{A} \to \mathbb{C}$ such that $\omega(I) = 1$ and $\omega(A) \ge 0$ if $A \ge 0$.

Definition

A state ω is called an infinite volume ground state if

 $\omega(A^*\delta(A)) \ge 0$ for all $A \in \mathcal{A}_{loc}$.

Let K denote the set of all infinite volume ground states.

- This definition expresses that local perturbations do not decrease the energy of a ground state.
- Infinite volume ground states are often obtained as weak* limit of finite volume ground states. The choice of finite volume boundary conditions play a crucial role.

A ground state satisfying the conditions $\omega(A_v) = 1$ and $\omega(B_f) = 1$ for all stars v and plaquettes f is called frustration-free.

Theorem (Alicki-Fannes-Horodecki (2007), Naaijkens (2011), Fiedler-Naaijkens (2015))

There exists a unique translation invariant ground state ω^0 of the quantum double model. ω^0 satisfies the following properties:

- ω^0 is the unique frustration free ground state.
- ω^0 is a pure state.
- Let (π₀, Ω₀, H₀) be a GNS-representation for ω⁰ and H₀ be the Hamiltonian in this GNS representation. Then, spec(H₀) = Z^{≥0} with a simple ground state eigenvector Ω₀.

In particular, ω^0 is a gapped ground state.

Superselection Sectors

Now let G be a finite abelian group.

Naaijkens (2011), Fiedler-Naaijkens (2015) constructed single excitation states in the thermodynamic limit. These states are labelled by their charge type and position of the charge, $\omega_s^{\chi,c}$.

Furthermore, distinct charge labels correspond to inequivalent states, and hence different superselection sectors. The superselection structure is completely described by the representation theory of the q.d., $\text{Rep}(\mathcal{D}(G))$.

The single excitation states $\omega_s^{\chi,c}$ are infinite volume ground states. Indeed, the set of ground states decomposes into $|G|^2$ sectors corresponding to the different charge types. Theorem (C-Naaijkens-Nachtergaele, 2016)

Let $\omega \in K$ be a ground state of the q.d. model for abelian group G. Then there exists disjoint subsets $K^{\chi,c}$ of K such that ω has the convex decomposition

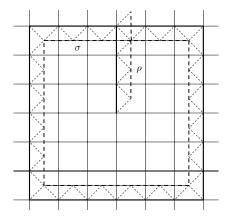
$$\omega = \sum_{\chi \in \widehat{\mathcal{G}}, c \in \mathcal{G}} \lambda_{\chi, c}(\omega) \omega^{\chi, c}$$
 where $\omega^{\chi, c} \in \mathcal{K}^{\chi, c}$.

Furthermore,

- For the single excitation states, $\omega_s^{\chi,c} \in K^{\chi,c}$
- K^{χ,c} is a face in the set of all states. In particular, if ω^{χ,c} is an extremal point of K^{χ,c} then ω^{χ,c} is a pure state.

If ω^{χ,c} ∈ K^{χ,c} is a pure state then it is equivalent to the single excitation state ω^{χ,c}_s.

The strategy of the proof is to reduce the infinite volume calculation to a finite volume calculation. In particular, we find a boundary term for every box such that the restriction of any infinite volume ground state to the box is a ground state of the finite volume Hamiltonian plus the boundary term.



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - のへで

Concluding Remarks

- The complete ground state problem has been solved for the XY-chain by Araki-Matsui (1985), for the XXZ-chain by Matsui (1996) and Koma-Nachtergaele (1998), and for the finite-range spin chains with a unique f.f. MPS ground state by Ogata (2016). Our result is the first solution to the ground state problem for a quantum model in two-dimensions.
- A current challenge in mathematical physics is the classification of gapped ground state phases. One approach is to construct a complete set of invariants. The invariance of the structure of anyon quasi-particles is usually taken as fact. Our results are a first step in rigorously studying the stability properties of the superselection structure of quantum double models.