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Local statistics, localization and delocalization

One of the key physical parameter of models is the localization length,
which describes the typical length scale of the eigenvectors of random
matrices. The system is called delocalized if the localization length ` is
comparable with the matrix size, and it is called localized otherwise.

Localized eigenvectors: lack of transport (insulators), and Poisson
local spectral statistics (typically strong disorder)
Delocalization: diffusion (electric conductors), and GUE local
statistics (typically weak disorder).

The questions of the order of the localization length are closely related
to the universality conjecture of the bulk local regime of the random
matrix theory.
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From the RMT point of view, the main objects of the local regime are
k-point correlation functions Rk (k = 1, 2, . . .), which can be defined by
the equalities:
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where ϕk : Rk → C is bounded, continuous and symmetric in its
arguments.

Universality conjecture in the bulk of the spectrum (hermitian
case, deloc.eg.s.) (Wigner – Dyson):
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Wigner matrices, β-ensembles with β = 1, 2, sample covariance
matrices, etc.: delocalization, GUE/GOE local spectral statistics
Anderson model (Random Schrödinger operators):

HRS = −4+ V,

where 4 is the discrete Laplacian in lattice box Λ = [1, n]d ∩ Zd, V
is a random potential (i.e. a diagonal matrix with i.i.d. entries).
In d = 1: narrow band matrix with i.i.d. diagonal

HRS =



V1 1 0 0 . . . 0
1 V2 1 0 . . . 0
0 1 V3 1 . . . 0
...

...
...

. . .
...

...
0 . . . 0 1 Vn−1 1
0 . . . 0 0 1 Vn


.

Localization, Poisson local spectral statistics (Fröhlich, Spencer,
Aizenman, Molchanov, . . . )
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Random band matrices

Intermediate model that interpolates between random Schrödinger
operator and Wigner matrices.

Λ = [1, n]d ∩ Zd is a lattice box, N = nd.

H = {Hjk}j,k∈Λ, H = H∗, E{Hjk} = 0.

Entries are independent (up to the symmetry) but not identically
distributed. Variance is given by some function J (even, compact
support or rapid decay)

E{|Hjk|2} =
1

Wd J
( |j− k|

W

)
Main parameter: band width W ∈ [1;N].

It also has nontrivial spatial structure like RS.
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Anderson transition in random band matrices

W = O(1) [∼ random Schrödinger] ←→ W = N [Wigner matrices]

Varying W, we can see the transition between localization and
delocalization

Conjecture (in the bulk of the spectrum):

d = 1 : ` ∼W2 W�
√
N Delocalization, GUE statistics

W�
√
N Localization, Poisson statistics

d = 2 : ` ∼ eW2 W�
√
log N Delocalization, GUE statistics

W�
√
log N Localization, Poisson statistics

d ≥ 3 : ` ∼ N W ≥W0 Delocalization, GUE statistics
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At the present time only some upper and lower bounds on the order of
localization length are proved rigorously (d = 1).

Schenker (2009) ` ≤W8 – localization techniques;
Erdős, Yau, Yin (2011) ` ≥W – RM methods;
Bourgade, Erdős, Yau, Yin (Feb. 2016) gap universality for
W ∼ N.

By the developing the Erdős-Yau approach, other results were obtained.
In these bounds the localization length is controlled in a rather weak
sense, i.e. the estimates hold for “most” eigenfunctions only:

Erdős, Knowles (2011): `�W7/6;
Erdős, Knowles, Yau, Yin (2012): `�W5/4 (not uniform in N).

Main problem: to control of the resolvent G(z) = (H− z)−1 for
ε := Im z ∼ 1/N (more precisely, to obtain the bounds for
E{|G(E + iε)|2}). The techniques allows to obtain the control only for
ε ∼ 1/W.
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Another method, which allows to work with random operators with
non-trivial spatial structures, is supersymmetry techniques (SUSY),
which based on the representation of the determinant as an integral
over the Grassmann variables.

This method is widely (and successfully) used in the physics literature
and is potentially very powerful but the rigorous control of the integral
representations, which can be obtained by this method, is quite
difficult.

Part of the formalism is rigorous and can be used. However, good
understanding of saddle point approximation in Grassmann variables is
still a major challenge for mathematicians.
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The method has some restrictions. First of all, up to this point it was
mainly applied to the matrices with Gaussian element’s distribution
(except the case of characteristic polynomials that we will discuss later).
Besides, it is much simpler to consider covariance of a special form.

We consider the following two models:

Random band matrices: specific covariance Jij =
(
−W2∆ + 1

)−1
ij

where ∆ is the discrete Laplacian with Neumann boundary
conditions on [1, n]d.

Note that for d = 1 we have Jij ≈ C1W−1 exp{−C2|i− j|/W}, and
so the variance of the matrix elements is exponentially small when
|i− j| �W.
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Block band matrices
Assign to every site j ∈ Λ one copy Kj ' CW of an W-dimensional
complex vector space, and set K = ⊕Kj ' C|Λ|W. From the
physical point of view, we are assigning W valence electron orbitals
to every atom of a solid with hypercubic lattice structure.

We start from the matrices M : K→ K belonging to GUE, and
then multiply the variances of all matrix elements of H connecting
Kj and Kk by the positive number Jjk, j, k ∈ Λ (which means that
H becomes the matrix constructed of W ×W blocks, and the
variance in each block is constant).

Such models were first introduced and studied by Wegner.

Note that PN(dH) is invariant under conjugation H→ U∗HU by
U ∈ U , where U is the direct product of all the groups of unitary
transformations in the subspaces Kj. This means that the
probability distribution PN(dH) has a local gauge invariance.
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We consider
J = 1/W + α∆/W, α < 1/4d.

This model is one of the possible realizations of the Gaussian random
band matrices, for example for d = 1 they correspond to the band
matrices with the width of the band 2W + 1.

Density of states for both models:

Denote by λ1, . . . , λN the eigenvalues of the random matrix H.

NCM and the density of states:

NN[∆] = N−1]{λi ∈ ∆} → N (∆), ρ(λ) =
1
2π

√
4− λ2, λ ∈ [−2, 2].
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SUSY method is especially useful for characteristic polynomials.

Correlation functions of the characteristic polynomials:

F2k(Λ) = E
{
det(λ1 −H) . . . det(λ2k −H)

}
,

where Λ = diag {λ1, . . . , λ2k}.
We are interested in the asymptotic behavior of this function for

λj = E +
ξj

Nρ(E)
, j = 1, 2, . . . , E ∈ (−2, 2).

Although F2k(Λ) is not a local object, it is also expected to be universal
in some sense. Moreover, correlation functions of characteristic
polynomials are expected to exhibit a crossover which is similar to that
of local eigenvalue statistic (for 1d RBM: GUE/GOE for W�

√
N, and

the different behavior for W�
√
N).
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To prove universality, we want to obtain the control of E |G(E + iε)|2
for ε ∼ N−1, where G(z) = N−1Tr (H− z)−1.

This means that we have to control

G±2 (z) := E

 ∂2

∂x∂y

det
(
H− E− iε− x

N

)
· det

(
H− E + iε− y

N

)
det(H− E− iε) · det(H− E + iε)

∣∣∣∣∣
x,y=0

 .

Grassmann (fermionic) variables can be used to represent the
determinants in the numerator, and usual complex variables (bosonic)
represents the determinants of the denominator. So from the SUSY
point of view characteristic polynomials correspond to the so-called
fermion-fermion sector of the supersymmetric full model (which
describes the correlation functions Rk).
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SUSY results for the characteristic polynomials:

Let D2 = F2(λ0, λ0), F̄2 = D−1
2 · F2.

lim
n→∞

F̄2

(
E+

ξ

2Nρ(E)
,E− ξ

2Nρ(E)

)
=


sinπξ
πξ

, W ≥ N1/2+θ;

1, 1�W ≤
√

N
C∗ log N

.

First part: S., 2013 – saddle-point analysis; (the case of orthogonal
symmetry is also done, S., 2015)

Second part: M. Shcherbina, S., 2016 – transfer matrix approach.
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SUSY results for the density of states:
Let g(z) = N−1E{Tr (H− z)−1}, gsc is a Stieltjes transform of
semi-circle.

Disertori, Pinson, Spencer, 2002: The smoothness and the local
semicircle for averaged density for RBM in 3d, i.e.

|g(z)− gsc(z)| ≤ C/W2

uniformly in Im z, W ≥W0.
Disertori, Lager, June 2016: the same in 2d.
M. Shcherbina, S., April 2016: local semicircle for averaged density
for RBM in 1d (with an arrow W−1).

First and second results use the cluster expansion, the second one uses
the supersymmetric transfer matrices.
All other result about the density for RBM deals with Im z�W−1

(but allows to control Gij, which implies delocalization at this scale).
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Other SUSY results for the full model:

S., 2014: Gaussian case, three diagonal block band matrices with

J =
α

W
4+

1
W

. If W ∼ N, then

1
(Nρ(λ0))2 R2

(
λ0+x/Nρ(λ0), λ0+y/Nρ(λ0)

) N→∞−→ 1−sin2(π(x− y))

π2(x− y)2

in any dimension.

Erdős, Bao, 2015: Combining this techniques with Green’s
function comparison strategy (Erdős-Yau), they proved

` ≥W7/6

in a strong sense for the block band matrices with more or less
general element’s distribution (subexponential tails, four Gaussian
moments).
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Transfer matrix approach to 1d RBM

What we can do: characteristic polynomials, density of states

Second correlation function: in progress (jointly with M. Shcherbina)

The main difficulties:
1 the transfer operator has a complicated structure including a part

that acts on unitary and hyperbolic groups;
2 the transfer operator is not self-adjoint, and thus the perturbation

theory is not easily applied in a rigorous way, since the standard
tools do not work;

3 the kernel of the transfer operator contains not only only the
complex, but also some Grassmann variables (for the second
correlation function it has 8 Grassmann variables, and so the
structure of the Grassmann part of the transfer operator in case of
the second correlation function is quite complicated ( 28 × 28

matrix)).
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