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Context: Many Body Localization

What is many body localizatione
* This is an active area of research in physics.
* One key thing is “Fock space localization.”
* Not many mathematical results
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Context: Many Body Localization

What is many body localizatione

* This is an active area of research in physics.
* One key thing is “Fock space localization.”
* Not many mathematical results

* John Imbrie’s result for disordered spin
chains is the notable exeption

* I'm not going to address MBL in this talk
(But it is the context....)

o= =
10/9/16 Disordered Holstein (Schenker) 2




(One Particle) Holstein Model

* “Polaron model

* A single particle on a finite lattice A c Z¢

* A harmonic oscillator sits at each lattice site

* Particle interacts with the field at the site it
occupies
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(One Particle) Holstein Model

* “Polaron model

* A single particle on a finite lattice A c Z¢

* A harmonic oscillator sits at each lattice site

* Particle interacts with the field at the site it
occupies

Hi =A™ + w(bl — %) (bx — B) +w > blb,

TEA
x#X

o= =
10/9/16 Disordered Holstein (Schenker) 3




Properties of the 1P Holstein Model

HY =A™ +w(bk — %) (bx — B) +w Y blb

TEA
z#£X

o Ha = {¢:A— Fa} = £2(A; Fp)
o A(A)qp(g;) = Zzg/ﬁl{w(x)_w(y)
o X¢(z) = z(x)
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Properties of the 1P Holstein Model

HY =A™ +w(bk — %) (bx — B) +w Y blb

TEA
z#£X

Ha = {¢: A— Fa} = £2(A; Fa)
AW y(z) = Zzgg Y(z) —¥(y)

XY(z) = zp(z)
w large ) < “Polaron” withm > 0
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Properties of the 1P Holstein Model

HY =A™ +w(bk — %) (bx — B) +w Y blb

TEA
z#£X

Ha = {¢: A— Fa} = £2(A; Fa)
AWM p(z) = Zzg/?{ v(z) — Y(y)

XY(z) = zp(z)
w large ) < “Polaron” withm > 0

* w small: the picture is much less clear
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Disordered Holstein

H§A) r= Hg(\){+V(A)
VY (z) = vp9(x)
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Disordered Holstein

Y = B v
Vidy(z) = vy(z)

{vz}zen 1.i.d. (Uniform, say) in [0, V]
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Disordered Holstein

H§A) r= Hg(\)%+V(A)
V(A)?P(x) — ’Ua:w(x)

*  {vz}een ii.d. (Uniform, say) in [0, V,]

« =™ is non-negative definite.
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{vz}zen 1.i.d. (Uniform, say) in [0, V]

2Y is non-negative definite.
Spectrum is conftained Iin
U[wn, wn + Vi + 4dy|
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Main Result

Theorem: For each n thereis 7vn such thaft if
Y < Yn, then the eigenstates in the n-th
band of the specfrum are exponentially
localized in posifion and localized in a
suitable metric in Fock space.

Hf(yA) = HI(JII(\){—I—V(A)
V(A)"p(x) = Um¢($)
T

A *
Hig) = vAM 4wk — %) (bx — B) +w Y blb,
TEA
z#X
<Pm ==
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Fock Space Displacement Operators

* Consider the Hilbert space for a single

oscillator:
H = span{|n)||n=0,2,...}

+ Let Dg = eft'-F%b
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Fock Space Displacement Operators

* Consider the Hilbert space for a single

oscillator:
H = span{|n)||n=0,2,...}

+ Let Dy = P =A%

* This operator is unitary and intertwines the
eigenbasis for b with that for (b — 8*)(b — 8):

(b" — B*)(b— B)Dg |m) = Dgb'b|m) = mDpg|m)
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Displacement Operator Bounds

Proposition: Let 1 > 0. Then there is a finite
consfant A=A, such that

(m|Dg [n)] < Ae~HIVr—vm
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Displacement Operator Bounds

Proposition: Let 1 > 0. Then there is a finite
consfant A=A, such that

(m|Dg [n)] < Ae~HIVr—vm

« This result is probably well known to experts, but we
haven't found it in the literature.
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Displacement Operator Bounds

Proposition: Let 1 > 0. Then there is a finite
constant A= Aup such that

(m|Dg [n)] < Ae~HIVr—vm

« This result is probably well known to experts, but we
haven't found it in the literature.

|t follows from the following remarkable identity
3 €240 [(m| Dg [n)[* = el VISP L, (= |87 (e# — e71)?)

where L,is the n-th order Laguerre polynomial.
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Transforming the basis
HY =wHY + v

Héﬁ) = 3 _alag a; = by — BI X = ]

xzel\ Yz

x T __p*
DY) |m) = ePbF*be |m)

HY |z,m) = (wlm| +v;) |z, m)

z,m) := |z)® DY’ |m)
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Kinetic Operator
(z, m| AW [y, €)

r

2d r=y& m=¢
— { (m(@)| D_s |(@)) (m(w)| Ds [€()) =~y & m(u) = £(u) for u # 2,y
0 otherwise.

* Malrix elements decay off the diagonal
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Kinetic Operator
(z, m| AW [y, €)

r

2d r=y& m=¢
— { (m(@)| D_s |¢(2)) (m(y)| Ds [€w)) @~y & m(u) = £(u) for u # o,y
0 otherwise.

* Malrix elements decay off the diagonal

This leads to Combes-Thomas type estimate for
H§A) = HéA) + yAW)

INn this basis.
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Main Result revisited

Theorem: For each nthereis Ynsuch that if
Y < Yn, then

E(|G(z,m,y,£)]°) < Ae—svP@mu&)e—pslvm—vel

for energies in the n-th band where v, p >0,
s < land

D(z,m,y,€) = |z —y|l + R(m,§)
with R(m,€&) a measure of the size of the set on
which m and & differ.
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Sketch of the proof

* Consider first the lowest band (n=1).
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Sketch of the proof

* Consider first the lowest band (n=1).

- A state |z, m) has on-site energy above the
band, unless the oscillators are all in their
ground state.

 The oscillator at £ must be In its
deformed ground state.
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Sketch of the proof

* Consider first the lowest band (n=1).

- A state |z, m) has on-site energy above the
band, unless the oscillators are all in their
ground state.

 The oscillator at £ must be In its
deformed ground state.

* We use a fractional moment method and the
Combes-Thomas bound is used to control
contributions from the higher bands.

o= =
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Sketch of the Proof (2)

« Now consider the second band.
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Sketch of the Proof (2)

« Now consider the second band.

* In this band, one of the oscillators can be Iin
It's first excited state.
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Sketch of the Proof (2)

« Now consider the second band.

* In this band, one of the oscillators can be Iin
It's first excited state.

* |In order for this excited oscillator to move,
the parficle must visit the excited site. This
leads to extra decay if the oscillator states
differ in the Green’s function.
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Sketch of the Proof (2)

« Now consider the second band.

* In this band, one of the oscillators can be Iin
It's first excited state.

* |In order for this excited oscillator to move,
the parficle must visit the excited site. This
leads to extra decay if the oscillator states
differ in the Green’s function.

* Higher bands are similar (but complicated).
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Perspectives and Comments

* Thisis NOT a fully many body problem.
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Perspectives and Comments

* Thisis NOT a fully many body problem.

* But the Hilbert space has features of the
many body Hilbert space.

* Spectral localization from eigenfunction
correlators.
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Perspectives and Comments

* Thisis NOT a fully many body problem.

* But the Hilbert space has features of the
many body Hilbert space.

* Spectral localization from eigenfunction
correlators.

 Can use spins in place of the oscillators
(actually it's technically simpler).
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Open Problems

* Improve the dependence of the crifical
hopping strength on band number
(currently super exponential)
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Open Problems

* Improve the dependence of the crifical
hopping strength on band number
(currently super exponential)

 Randomizing the oscillator frequencies
should help. Why doesn’t it lead to
technical help?
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Open Problems

* Improve the dependence of the crifical
hopping strength on band number
(currently super exponential)

 Randomizing the oscillator frequencies
should help. Why doesn’t it lead to
technical help?

 Could it be that all states are localized in 1D
or for weak hopping?
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Pie in the Sky Questions
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Pie in the Sky Questions

*  What about positive energy densitye
- Do we even need on-site randomness?e
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Pie in the Sky Questions

*  What about positive energy densitye
Do we even need on-site randomnesse
 What about a multi/many particle Holstein
model?

Maybe we could do finitely many particles
a la Aizenman, Warzel or Sukhov,
Chulaensky
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THANK YOU!
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