$\mathrm{i}\partial_t\psi_t=H\overline{\psi_t}$

Localization in the disordered Holstein Model

Jeffrey Schenker and Rajinder Mavi

Context: Many Body Localization

What is many body localization?

- This is an active area of research in physics.
- One key thing is "Fock space localization."
- Not many mathematical results

Context: Many Body Localization

What is many body localization?

- This is an active area of research in physics.
- One key thing is "Fock space localization."
- Not many mathematical results
 - John Imbrie's result for disordered spin chains is the notable exeption

Context: Many Body Localization

What is many body localization?

- This is an active area of research in physics.
- One key thing is "Fock space localization."
- Not many mathematical results
 - John Imbrie's result for disordered spin chains is the notable exeption
- I'm not going to address MBL in this talk (But it is the context....)

(One Particle) Holstein Model

- "Polaron model
- A single particle on a finite lattice $\Lambda \subset \mathbb{Z}^d$
- A harmonic oscillator sits at each lattice site
- Particle interacts with the field at the site it occupies

(One Particle) Holstein Model

- "Polaron model
- A single particle on a finite lattice $\Lambda \subset \mathbb{Z}^d$
- A harmonic oscillator sits at each lattice site
- Particle interacts with the field at the site it occupies

$$H_{\text{Hol}}^{(\Lambda)} = \gamma \Delta^{(\Lambda)} + \omega (b_{\mathbf{X}}^{\dagger} - \beta^*) (b_{\mathbf{X}} - \beta) + \omega \sum_{\substack{x \in \Lambda \\ x \neq \mathbf{X}}} b_{x}^{\dagger} b_{x}$$

Properties of the 1P Holstein Model

$$H_{\text{Hol}}^{(\Lambda)} = \gamma \Delta^{(\Lambda)} + \omega (b_{\mathbf{X}}^{\dagger} - \beta^*) (b_{\mathbf{X}} - \beta) + \omega \sum_{\substack{x \in \Lambda \\ x \neq \mathbf{X}}} b_{x}^{\dagger} b_{x}$$

- $\mathcal{H}_{\Lambda} = \{ \psi : \Lambda \to \mathcal{F}_{\Lambda} \} = \ell^2(\Lambda; \mathcal{F}_{\Lambda})$
- $\Delta^{(\Lambda)}\psi(x) = \sum_{y\in\Lambda} x \sim y \psi(x) \psi(y)$
- $\boldsymbol{X}\psi(x) = x\psi(x)$

Properties of the 1P Holstein Model

$$H_{\text{Hol}}^{(\Lambda)} = \gamma \Delta^{(\Lambda)} + \omega (b_{\mathbf{X}}^{\dagger} - \beta^*) (b_{\mathbf{X}} - \beta) + \omega \sum_{\substack{x \in \Lambda \\ x \neq \mathbf{X}}} b_{x}^{\dagger} b_{x}$$

- $\mathcal{H}_{\Lambda} = \{ \psi : \Lambda \to \mathcal{F}_{\Lambda} \} = \ell^2(\Lambda; \mathcal{F}_{\Lambda})$
- $\Delta^{(\Lambda)}\psi(x) = \sum_{y\in\Lambda} x \sim y \psi(x) \psi(y)$
- $\boldsymbol{X}\psi(x) = x\psi(x)$
- ω large \longrightarrow a "Polaron" with m>0

Properties of the 1P Holstein Model

$$H_{\text{Hol}}^{(\Lambda)} = \gamma \Delta^{(\Lambda)} + \omega (b_{\mathbf{X}}^{\dagger} - \beta^*) (b_{\mathbf{X}} - \beta) + \omega \sum_{\substack{x \in \Lambda \\ x \neq \mathbf{X}}} b_{x}^{\dagger} b_{x}$$

- $\mathcal{H}_{\Lambda} = \{ \psi : \Lambda \to \mathcal{F}_{\Lambda} \} = \ell^2(\Lambda; \mathcal{F}_{\Lambda})$
- $\Delta^{(\Lambda)}\psi(x) = \sum_{y\in\Lambda} x \sim y \psi(x) \psi(y)$
- $\boldsymbol{X}\psi(x) = x\psi(x)$
- ω large \longrightarrow a "Polaron" with m>0
- ω small: the picture is much less clear

$$H_{\gamma}^{(\Lambda)} := H_{\mathrm{Hol}}^{(\Lambda)} + V^{(\Lambda)}$$

 $V^{(\Lambda)}\psi(x) = v_x\psi(x)$

$$H_{\gamma}^{(\Lambda)} := H_{\mathrm{Hol}}^{(\Lambda)} + V^{(\Lambda)}$$

 $V^{(\Lambda)}\psi(x) = v_x\psi(x)$

• $\{v_x\}_{x\in\Lambda}$ i.i.d. (uniform, say) in $[0,V_+]$

$$H_{\gamma}^{(\Lambda)} := H_{\mathrm{Hol}}^{(\Lambda)} + V^{(\Lambda)}$$

 $V^{(\Lambda)}\psi(x) = v_x\psi(x)$

- $\{v_x\}_{x\in\Lambda}$ i.i.d. (uniform, say) in $[0,V_+]$
- $H_{\gamma}^{(\Lambda)}$ is non-negative definite.

$$H_{\gamma}^{(\Lambda)} := H_{\mathrm{Hol}}^{(\Lambda)} + V^{(\Lambda)}$$

 $V^{(\Lambda)}\psi(x) = v_x\psi(x)$

- $\{v_x\}_{x\in\Lambda}$ i.i.d. (uniform, say) in $[0,V_+]$
- $H_{\gamma}^{(\Lambda)}$ is non-negative definite.
- Spectrum is contained in

$$\bigcup_{n} [\omega n, \omega n + V_{+} + 4d\gamma]$$

Main Result

Theorem: For each n there is γ_n such that if $\gamma < \gamma_n$, then the eigenstates in the n-th band of the spectrum are exponentially localized in position and localized in a suitable metric in Fock space.

$$\begin{split} H_{\gamma}^{(\Lambda)} &:= H_{\mathrm{Hol}}^{(\Lambda)} + V^{(\Lambda)} \\ V^{(\Lambda)} \psi(x) &= v_x \psi(x) \\ H_{\mathrm{Hol}}^{(\Lambda)} &= \gamma \Delta^{(\Lambda)} + \omega (b_{\mathbf{X}}^{\dagger} - \beta^*) (b_{\mathbf{X}} - \beta) + \omega \sum_{\substack{x \in \Lambda \\ x \neq \mathbf{X}}} b_x^{\dagger} b_x \end{split}$$

Fock Space Displacement Operators

Consider the Hilbert space for a single oscillator:

$$\mathcal{H} = \text{span}\{|n\rangle \mid |n = 0, 2, ...\}$$

• Let $D_{\beta} = \mathrm{e}^{\beta b^{\dagger} - \beta^* b}$

Fock Space Displacement Operators

Consider the Hilbert space for a single oscillator:

$$\mathcal{H} = \text{span}\{|n\rangle \mid |n = 0, 2, ...\}$$

- Let $D_{\beta} = \mathrm{e}^{\beta b^{\dagger} \beta^* b}$
- This operator is **unitary** and **intertwines** the eigenbasis for $b^{\dagger}b$ with that for $(b^{\dagger} \beta^*)(b \beta)$:

$$(b^{\dagger} - \beta^*)(b - \beta)D_{\beta} |m\rangle = D_{\beta}b^{\dagger}b |m\rangle = mD_{\beta} |m\rangle$$

Displacement Operator Bounds

Proposition: Let $\mu > 0$. Then there is a finite constant $A = A_{\mu,\beta}$ such that

$$|\langle m|D_{\beta}|n\rangle| \leq Ae^{-\mu|\sqrt{n}-\sqrt{m}|}$$

Displacement Operator Bounds

Proposition: Let $\mu > 0$. Then there is a finite constant $A = A_{\mu,\beta}$ such that

$$|\langle m|D_{\beta}|n\rangle| \leqslant Ae^{-\mu|\sqrt{n}-\sqrt{m}|}$$

 This result is probably well known to experts, but we haven't found it in the literature.

Displacement Operator Bounds

Proposition: Let $\mu > 0$. Then there is a finite constant $A = A_{\mu,\beta}$ such that

$$|\langle m|D_{\beta}|n\rangle| \leq Ae^{-\mu|\sqrt{n}-\sqrt{m}|}$$

- This result is probably well known to experts, but we haven't found it in the literature.
- It follows from the following remarkable identity

$$\sum_{m} e^{2\mu(m-n)} |\langle m | D_{\beta} | n \rangle|^{2} = e^{(e^{2\mu}-1)|\beta|^{2}} L_{n} \left(-|\beta|^{2} (e^{\mu} - e^{-\mu})^{2} \right)$$

where L_n is the n-th order Laguerre polynomial.

Transforming the basis

$$H_0^{(\Lambda)} = \omega H_{
m ph}^{(\Lambda)} + V^{(\Lambda)}$$
 $H_{
m ph}^{(\Lambda)} = \sum_{x \in \Lambda} a_x^{\dagger} a_x \qquad a_x = b_x - \beta I[m{X} = x]$
 $D_{m{eta}}^{(x)} |m{m}\rangle \; := \; {
m e}^{m{eta} b_x^{\dagger} - m{eta}^* b_x} |m{m}
angle$

$$egin{array}{ll} H_0^{(\Lambda)}\ket{x,m{m}} &= & (\omega|m{m}|+v_x)\ket{x,m{m}} \ \ket{x,m{m}} &:= & \ket{x}\otimes D_eta^{(x)}\ket{m{m}} \end{array}$$

Kinetic Operator

$$\langle x, \boldsymbol{m} | \Delta^{(\Lambda)} | y, \boldsymbol{\xi} \rangle$$

$$= \begin{cases} 2d & x = y \& \boldsymbol{m} = \boldsymbol{\xi} \\ \langle \boldsymbol{m}(x) | D_{-\beta} | \boldsymbol{\xi}(\boldsymbol{x}) \rangle \langle \boldsymbol{m}(y) | D_{\beta} | \boldsymbol{\xi}(\boldsymbol{y}) \rangle & x \sim y \& \boldsymbol{m}(u) = \boldsymbol{\xi}(u) \text{ for } u \neq x, y \\ 0 & \text{otherwise.} \end{cases}$$

Matrix elements decay off the diagonal

Kinetic Operator

$$\langle x, \boldsymbol{m} | \Delta^{(\Lambda)} | y, \boldsymbol{\xi} \rangle$$

$$= \begin{cases} 2d & x = y \& \boldsymbol{m} = \boldsymbol{\xi} \\ \langle \boldsymbol{m}(x) | D_{-\beta} | \boldsymbol{\xi}(\boldsymbol{x}) \rangle \langle \boldsymbol{m}(y) | D_{\beta} | \boldsymbol{\xi}(\boldsymbol{y}) \rangle & x \sim y \& \boldsymbol{m}(u) = \boldsymbol{\xi}(u) \text{ for } u \neq x, y \\ 0 & \text{otherwise.} \end{cases}$$

Matrix elements decay off the diagonal

This leads to Combes-Thomas type estimate for

$$H_{\gamma}^{(\Lambda)} = H_0^{(\Lambda)} + \gamma \Delta^{(\Lambda)}$$

in this basis.

Main Result revisited

Theorem: For each n there is γ_n such that if $\gamma < \gamma_n$, then

$$\mathbb{E}\left(\left|G(x, \boldsymbol{m}, y, \boldsymbol{\xi})\right|^{s}\right) \leqslant A e^{-s\nu D(x, \boldsymbol{m}, y, \boldsymbol{\xi})} e^{-\mu s\left|\sqrt{\boldsymbol{m}} - \sqrt{\boldsymbol{\xi}}\right|}$$

for energies in the n-th band where $\,
u,\;\mu>0$, $\,s<1$ and

$$D(x, \boldsymbol{m}, y, \boldsymbol{\xi}) = |x - y| + R(\boldsymbol{m}, \boldsymbol{\xi})$$

with $R(m, \xi)$ a measure of the size of the set on which m and ξ differ.

Sketch of the proof

Consider first the lowest band (n=1).

Sketch of the proof

- Consider first the lowest band (n=1).
- A state $|x,m\rangle$ has on-site energy above the band, unless the oscillators are all in their ground state.
 - The oscillator at x must be in its **deformed** ground state.

Sketch of the proof

- Consider first the lowest band (n=1).
- A state $|x,m\rangle$ has on-site energy above the band, unless the oscillators are all in their ground state.
 - The oscillator at x must be in its deformed ground state.
- We use a fractional moment method and the Combes-Thomas bound is used to control contributions from the higher bands.

Now consider the second band.

- Now consider the second band.
- In this band, one of the oscillators can be in it's first excited state.

- Now consider the second band.
- In this band, one of the oscillators can be in it's first excited state.
- In order for this excited oscillator to move, the particle must visit the excited site. This leads to extra decay if the oscillator states differ in the Green's function.

- Now consider the second band.
- In this band, one of the oscillators can be in it's first excited state.
- In order for this excited oscillator to move, the particle must visit the excited site. This leads to extra decay if the oscillator states differ in the Green's function.
- Higher bands are similar (but complicated).

This is NOT a fully many body problem.

- This is NOT a fully many body problem.
- But the Hilbert space has features of the many body Hilbert space.

- This is **NOT** a fully many body problem.
- But the Hilbert space has features of the many body Hilbert space.
- Spectral localization from eigenfunction correlators.

- This is **NOT** a fully many body problem.
- But the Hilbert space has features of the many body Hilbert space.
- Spectral localization from eigenfunction correlators.
- Can use spins in place of the oscillators (actually it's technically simpler).

Open Problems

 Improve the dependence of the critical hopping strength on band number (currently super exponential)

Open Problems

- Improve the dependence of the critical hopping strength on band number (currently super exponential)
- Randomizing the oscillator frequencies should help. Why doesn't it lead to technical help?

Open Problems

- Improve the dependence of the critical hopping strength on band number (currently super exponential)
- Randomizing the oscillator frequencies should help. Why doesn't it lead to technical help?
- Could it be that all states are localized in 1D or for weak hopping?

Pie in the Sky Questions

Pie in the Sky Questions

- What about positive energy density?
 - Do we even need on-site randomness?

Pie in the Sky Questions

- What about positive energy density?
 - Do we even need on-site randomness?
- What about a multi/many particle Holstein model?
 - Maybe we could do finitely many particles a la Aizenman, Warzel or Sukhov, Chulaensky

THANK YOU!