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Context: Many Body Localization

What is many body localization?
• This is an active area of research in physics.
• One key thing is “Fock space localization.”
• Not many mathematical results

• John Imbrie’s result for disordered spin 
chains is the notable exeption

• I’m not going to address MBL in this talk  
    (But it is the context….)
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•  

•   

•    large         a “Polaron” with 

•   

•     small: the picture is much less clear
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•           is non-negative definite.
• Spectrum is contained in

•               i.i.d. (uniform, say) in
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Theorem: For each     there is       such that if 
            , then the eigenstates in the n-th 
band of the spectrum are exponentially 
localized in position and localized in a 
suitable metric in Fock space.
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• Consider the Hilbert space for a single 
oscillator:           

• Let
• This operator is unitary and intertwines the 

eigenbasis for      with that for                     :  
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Proposition: Let         .  Then there is a finite 
constant               such that 
     

• It follows from the following remarkable identity 
 
 
where     is the n-th order Laguerre polynomial.
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• Matrix elements decay off the diagonal  

This leads to Combes-Thomas type estimate for 

in this basis.
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Theorem: For each     there is       such that if 
            , then  

for energies in the n-th band where                 ,       
          and 

with              a measure of the size of the set on 
which      and     differ.  
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Sketch of the proof

• Consider first the lowest band (n=1).
• A state            has on-site energy above the 

band, unless the oscillators are all in their 
ground state.

• The oscillator at     must be in its 
deformed ground state.

• We use a fractional moment method and the 
Combes-Thomas bound is used to control 
contributions from the higher bands.
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• In order for this excited oscillator to move, 
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10/9/16 13



MATHEMATICS

Disordered Holstein (Schenker)

Sketch of the Proof (2)

• Now consider the second band.
• In this band, one of the oscillators can be in 

it’s first excited state.  
• In order for this excited oscillator to move, 

the particle must visit the excited site.  This 
leads to extra decay if the oscillator states 
differ in the Green’s function.

• Higher bands are similar (but complicated).
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Perspectives and Comments

• This is NOT a fully many body problem.  
• But the Hilbert space has features of the 

many body Hilbert space. 
• Spectral localization from eigenfunction 

correlators.
• Can use spins in place of the oscillators 

(actually it’s technically simpler).
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Open Problems
• Improve the dependence of the critical 

hopping strength on band number 
(currently super exponential)

• Randomizing the oscillator frequencies 
should help.  Why doesn’t it lead to 
technical help?

• Could it be that all states are localized in 1D 
or for weak hopping?
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Pie in the Sky Questions

• What about positive energy density? 
• Do we even need on-site randomness?

• What about a multi/many particle Holstein 
model?  

• Maybe we could do finitely many particles 
a la Aizenman, Warzel or Sukhov, 
Chulaensky

10/9/16 16



MATHEMATICS

Disordered Holstein (Schenker)

THANK YOU!
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