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KdV equation with almost periodic initial data

Consider the initial value problem for the KdV equation:

∂tu − 6u∂xu + ∂3
xu = 0

u(x , 0) = V (x)

Theorem (McKean–Trubowitz 1976)

If V ∈ Hn(T), then there is a global solution u(x , t) on T× R and this solution
is Hn(T)-almost periodic in t.

This means that u(·, t) = F (ζt) for some continuous F : T∞ → Hn(T) and
ζ ∈ R∞.

Solutions on T are periodic solutions on R, which motivates the following:

Conjecture (Deift 2008)

If V : R→ R is almost periodic, then there is a global solution u(x , t) that is
almost periodic in t.

Even short time existence of solutions is not known in this generality.
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Global existence, uniqueness, and almost periodicity

The following theorem solves Deift’s conjecture under certain assumptions:

Theorem (Binder–Damanik–Goldstein–Lukic)

If V : R→ R is almost periodic, HV = −∂2
x + V has σac(HV ) = σ(HV ) = S,

and S is “thick enough”, then

1 (existence) there exists a global solution u(x , t);

2 (uniqueness) if ũ is another solution on R× [−T ,T ], and

ũ, ∂3
x ũ ∈ L∞(R× [−T ,T ]),

then ũ = u;

3 (x-dependence) for each t, x 7→ u(x , t) is almost periodic in x;

4 (t-dependence) t 7→ u(·, t) is W 4,∞(R)-almost periodic in t.

Thickness conditions will be described below.
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Application to quasi-periodic initial data

An explicit class of almost periodic initial data covered by this result is the
following.

Consider a quasi-periodic potential given by

V (x) = U(ωx)

with sampling function U : Tν → R and frequency vector ω ∈ Rν .

Assume that the sampling function is small and analytic:

U(θ) =
∑
m∈Zν

c(m)e2πimθ

|c(m)| ≤ εe−κ0|m|

for some ε > 0, 0 < κ0 ≤ 1.

We also assume that the frequency vector ω ∈ Rν is Diophantine,

|mω| ≥ a0|m|−b0 , m ∈ Zν \ {0}

for some 0 < a0 < 1, ν < b0 <∞.

Then the above theorem applies as long as ε < ε0(a0, b0, κ0).
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Application to quasi-periodic initial data

Theorem

If V is quasi-periodic with a Diophantine frequency vector and a sufficiently
small analytic sampling function, then

1 (existence) there exists a global solution u(x , t);

2 (uniqueness) if ũ is another solution on R× [−T ,T ], and

ũ, ∂3
x ũ ∈ L∞(R× [−T ,T ]),

then ũ = u;

3 (x-dependence) for each t, u(·, t) is quasi-periodic in x,

u(x , t) =
∑
m∈Zν

c(m, t)e2πimθ

|c(m, t)| ≤
√

4ε e−
κ0
4
|m|

4 (t-dependence) t 7→ u(·, t) is W k,∞(R)-almost periodic in t, for any
integer k ≥ 0.
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Reflectionless operators and Remling’s theorem

Define Green’s function of HW = −∂2
x + W by

G(x , y ; z) = 〈δx , (HW − z)−1δy 〉

W is reflectionless if

ReG(0, 0;E + i0) = 0 for Lebesgue-a.e. E ∈ S = σ(HW )

Write W ∈ R(S) in this case

Theorem (Remling 2007)

Assume W is almost periodic and S = σ(HW ) = σac(HW ). Then W ∈ R(S).

Theorem (Rybkin 2008)

Assume that V ∈ R(S) and σac(HV ) = S. Assume that u(x , t) is a solution
such that

u, ∂3
xu ∈ L∞(R× [−T ,T ])

for some T > 0. Then, u(·, t) ∈ R(S) for every t ∈ [−T ,T ].
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Torus of Dirichlet data

Write the spectrum as S = [E ,∞) \
⋃
j∈J

(E−j ,E
+
j )

Fix a gap (E−j ,E
+
j ) and x ∈ R

Define µj(x) =


E G(x , x ;E) = 0,where E ∈ (E−j ,E

+
j )

E−j G(x , x ;E) > 0,∀E ∈ (E−j ,E
+
j )

E+
j G(x , x ;E) < 0,∀E ∈ (E−j ,E

+
j )

If µj(x) ∈ (E−j ,E
+
j ), define σj(x) ∈ {±}, so that µj(x) is a Dirichlet

eigenvalue of H on [x , σj(x)∞)

View (µj(x), σj(x))j∈J as an element of a torus D(S) =
∏
j∈J

Tj

Introduce angular variables ϕj(x) ∈ R/2πZ by

µj = E−j + (E+
j − E−j ) cos2(ϕj/2)

σj = sgn sinϕj
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The Dubrovin flow and the trace formula

Theorem (Craig 1989)

Under suitable conditions on S, the ϕj(x) evolve according to the Dubrovin flow

d

dx
ϕ(x) = Ψ(ϕ(x))

which is given by a Lipshitz vector field Ψ,

Ψj(ϕ) = σj

√√√√4(E − µj)(E+
j − µj)(E−j − µj)

∏
k 6=j

(E−k − µj)(E+
k − µj)

(µk − µj)2
,

and the trace formula recovers the potential,

V (x) = Q1(ϕ(x)) := E +
∑
j∈J

(E+
j + E−j − 2µj(x)).
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KdV evolution on Dirichlet data

Add time dependence: consider a solution u(x , t) and its Dirichlet data µ(x , t).

Proposition

Under suitable “Craig-type” conditions on S,

∂xϕ(x , t) = Ψ(ϕ(x , t)), ∂tϕ(x , t) = Ξ(ϕ(x , t)),

where Ξ is a Lipshitz vector field given by

Ξj = −2(Q1 + 2µj)Ψj ,

and the trace formula recovers the solution,

u(x , t) = Q1(ϕ(x , t)) = E +
∑
j∈J

(E+
j + E−j − 2µj(x , t)).
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Existence of solutions

Under the Craig-type conditions on S , we prove

Proposition

Let f ∈ D(S). There exists ϕ : R2 → D(S) such that ϕ(0, 0) = f and

∂xϕ(x , t) = Ψ(ϕ(x , t)), ∂tϕ(x , t) = Ξ(ϕ(x , t)).

If we define u : R2 → R by

u(x , t) = Q1(ϕ(x , t))

then the function u(x , t) obeys the KdV equation. Moreover, for each t ∈ R,
we have u(·, t) ∈ R(S) and B(u(·, t)) = ϕ(0, t).
Moreover, if we define Qk = E k +

∑
j∈J((E−j )k + (E+

j )k − 2µk
j ), then

Q2 ◦ ϕ = − 1
2
∂2
xu + u2

Q3 ◦ ϕ =
3

16
∂4
xu −

3

2
u∂2

xu −
15

16
(∂xu)2 + u3

Proof is by showing convergence of approximants with finite gap spectra
SN = [E ,∞) \

⋃N
j=1(E−j ,E

+
j ), for which the above statements were known.
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Almost periodicity of the solution

Define ξj(z) as the solution of the Dirichlet problem on C \ S with boundary
values on S̄ given by

ξj(x) =

{
1 x =∞ or x ∈ S , x ≥ E+

j

0 x ∈ S , x ≤ E−j

Sodin–Yuditskii define the infinite dimensional Abel map A : D(S)→ TJ ,

Aj(ϕ) = π
∑
k∈J

σk (ξj(µk)− ξj(E−k )) (mod 2πZ)

Proposition

The map A linearizes the KdV flow: for some δ, ζ ∈ RJ ,

A(ϕ(x , t)) = A(ϕ(0, 0)) + δx + ζt.

The proof uses finite gap approximants, for which linearity is known,

AN
j (ϕN(x , t)) = AN

j (ϕN(0, 0)) + δNj x + ζNj t,

and uniform convergence on compacts.



Thank you!
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