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Notation

Basic notation

I H will always denote a discrete Schrödinger operator, that is, an
operator H =−∆ +V on `2(Zd), where where ∆ is the (centered)
discrete Laplacian: (∆ϕ)(x) := ∑|y−x |=1 ϕ(y) for ϕ ∈ `2(Zd).

I If Θ⊂ Zd , we let HΘ be the restriction of χΘHχΘ to `2(Θ).

I Given Φ⊂Θ⊂ Zd , we consider `2(Φ)⊂ `2(Θ) by extending functions
on Φ to functions on Θ that are identically 0 on Θ\Φ.

I ‖x‖= maxj=1,2,...,d |xj | and |x |=
√

∑
d
j=1 x

2
j for x ∈ Rd .

I We consider Zd ⊂ Rd and use boxes in Zd centered at points in Rd :

ΛL(x) = ΛR
L (x)∩Zd , where x ∈Rd and ΛR

L (x) =
{
y ∈ Rd ; ‖y −x‖ ≤ L

2

}
.

Note that (L−2)d < |ΛL(x)| ≤ (L+ 1)d for L≥ 2.
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Notation

Exponents

We fix ξ ,ζ ,β ,τ ∈ (0,1) and γ > 1

such that

0 < ξ < ζ < β <
1

γ
< 1 < γ <

√
ζ

ξ
and max

{
γβ , (γ−1)β+1

γ

}
< τ < 1,

take ζ̃ =
ζ + β

2
∈ (ζ ,β ) and τ̃ =

1 + τ

2
∈ (τ,1).

In addition we fix κ ∈ (0,1) and κ ′ ∈ [0,1) such that

κ + κ
′ < τ− γβ ,

set ρ = min
{

κ, 1−τ

2 ,γτ− (γ−1)ζ̃ −1
}
∈ [κ,1),

and pick ς ∈ (0,1−ρ].
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Basic definitions

Eigenpairs and eigensystems

Let H =−∆ +V on `2(Zd) and Θ⊂ Zd .

We call (ϕ,λ ) an eigenpair for HΘ if λ is an eigenvalue for HΘ and ϕ

is a corresponding normalized eigenfunction, that is,

HΘϕ = λϕ, where λ ∈ R and ϕ ∈ `2(Θ) with ‖ϕ‖= 1.

A collection {(ϕj ,λj)}j∈J of eigenpairs for HΘ will be called an

eigensystem for HΘ if {ϕj}j∈J is an orthonormal basis for `2(Θ).

If Θ is finite and all eigenvalues of HΘ are simple, we can rewrite an
eigensystem as {(ϕλ ,λ )}

λ∈σ(HΘ).
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Basic definitions

Level spacing boxes and localized eigenfunctions

Definition
Given L> 0, a finite set Θ⊂ Zd will be called L-level spacing for H if all
eigenvalues of HΘ are simple, and∣∣λ −λ

′∣∣≥ e−L
β

for all λ ,λ ′ ∈ σ(HΘ), λ 6= λ
′.

A box ΛL will be called level spacing for H if it is L-level spacing for H.

Definition

Let ΛL be a box, x ∈ ΛL, and m ≥ 0. Then ϕ ∈ `2(ΛL) is said to be
(x ,m)-localized if ‖ϕ‖= 1 and

|ϕ(y)| ≤ e−m‖y−x‖ for all y ∈ ΛL with ‖y −x‖ ≥ Lτ .
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Basic definitions

Localizing boxes in energy intervals

Definition
Let J = (E −B,E +B)⊂ I = (E −A,E +A), where E ∈ R and 0 < B ≤ A,
and let m > 0.

A box ΛL will be called (m,J, I )-localizing for H if

1 ΛL is level spacing for H.

2 There exists an (m,J, I )-localized eigensystem for HΛL
: an

eigensystem {(ϕν ,ν)}
ν∈σ(HΛL

) for HΛL
such that for all ν ∈ σ(HΛL

)

the eigenfunction ϕν is (xν ,mχJ(ν)hI (ν))-localized for some xν ∈ ΛL,
where the modulating function hI is defined by

hI (t) = h
(
t−E
A

)
for t ∈ R, where h(s) =

{
1− s2 if s ∈ [0,1)

0 otherwise
.

ΛL is (m, I )-localizing for H if ΛL is (m, I , I )-localizing for H.

Note that χJ(ν)hI (ν)) > 0 ⇐⇒ ν ∈ J.
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Anderson model

The Anderson model

The Anderson model is the random Schrödinger operator

Hω :=−∆ +Vω on `2(Zd),

where

1 ∆ is the (centered) discrete Laplacian:

(∆ϕ)(x) := ∑
y∈Zd ; |y−x |=1

ϕ(y) for ϕ ∈ `2(Zd).

2 Vω (x) = ωx for x ∈ Zd , where ω = {ωx}x∈Zd are i.i.d.r.v.’s with a
non-degenerate probability distribution µ with bounded support.
We assume µ is Hölder continuous of order α ∈ ( 1

2 ,1]:

Sµ (t)≤ Ktα for all t ∈ [0,1],

where K is a constant and Sµ (t) := supa∈R µ {[a,a+ t]}.

Remark: σ(Hω ) = Σ := [−2d ,2d ] + supp µ with probability one.
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We assume µ is Hölder continuous of order α ∈ ( 1
2 ,1]:

Sµ (t)≤ Ktα for all t ∈ [0,1],

where K is a constant and Sµ (t) := supa∈R µ {[a,a+ t]}.

Remark: σ(Hω ) = Σ := [−2d ,2d ] + supp µ with probability one.

Abel Klein



Anderson model

The Anderson model

The Anderson model is the random Schrödinger operator

Hω :=−∆ +Vω on `2(Zd), where

1 ∆ is the (centered) discrete Laplacian:

(∆ϕ)(x) := ∑
y∈Zd ; |y−x |=1

ϕ(y) for ϕ ∈ `2(Zd).

2 Vω (x) = ωx for x ∈ Zd , where ω = {ωx}x∈Zd are i.i.d.r.v.’s with a
non-degenerate probability distribution µ with bounded support.
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Anderson model

Probability estimate for level spacing

The eigensystem MSA does not use a Wegner estimate; it uses instead a
probability estimate for level spacing sets derived from Minami’s estimate.

Lemma (Klein-Molchanov)

Let Hω be an Anderson model, Θ⊂ Zd , and L> 1. Then,

P{Θ is L-level spacing for Hω} ≥ 1−Yµ |Θ|2 e−(2α−1)Lβ

.

In the special case of a box ΛL, we have

P{ΛL is level spacing for Hω} ≥ 1−Yµ (L+ 1)2d e−(2α−1)Lβ

.
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Eigensystem multiscale analysis in an energy interval

Some notation

Let I = (E −A,E +A) with E ∈ R and A> 0 , and L> 1.

We set

IL =
(
E −A(1−L−κ ),E +A(1−L−κ )

)
,

I L =
(
E −A(1−L−κ )−1,E +A(1−L−κ )−1

)
.

Given m > 0, C > 0, we set

A∞ = A∞(A,L) = A
∞

∏
k=0

(
1−L−κγk

)
,

I∞ = I∞(A,L) = (E −A∞(A,L),E +A∞(A,L)),

m∞ = m∞(m,L,C ) = m
∞

∏
k=0

(
1−CL−ργk

)
.

Note that

lim
L→∞

A∞(A,L) = A and lim
L→∞

m∞(m,L,C ) = m.
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Eigensystem multiscale analysis in an energy interval

Eigensystem multiscale analysis in an energy interval

Theorem
Let Hω be an Anderson model. Given m− > 0, there exists a a finite scale
L = L (d ,m−) and a constant Cd ,m− > 0 with the following property:

Suppose for some scale L0 ≥L we have

inf
x∈Rd

P{ΛL0(x) is (m0, I0)-localizing for Hω} ≥ 1− e−L
ζ

0 ,

where I0 = (E −A0,E +A0)⊂ R, with E ∈ R and A0 > 0, and

m−L
−κ ′

0 ≤m0 ≤ 1
2 log

(
1 + A0

4d

)
.

Let A∞ = A∞(A0,L0), I∞ = I∞(A0,L0), and m∞ = m∞(m0,L0,Cd ,m−).
Then for all L≥ L

γ

0 we have

inf
x∈Rd

P
{

ΛL(x) is (m∞, I∞, I
L

1
γ

∞ )-localizing for Hω

}
≥ 1− e−L

ξ

,

A∞ = A∞(L0) = A0

∞

∏
k=0

(
1−L

−κγk

0

)
, I∞ = (E −A∞,E +A∞),

m∞ = m∞(L0) = m0

∞

∏
k=0

(
1−Cd ,m−L

−ργk

0

)
< 1

2 log
(

1 + A∞

4d

)
.

In particular, limL0→∞A∞(L0) = A0 and limL0→∞m∞(L0) = m0.
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Eigensystem multiscale analysis in an energy interval

Comments

Theorem previously proved in the high disorder case, where I0 = R.

Theorem extended by Klein and Tsang to a bootstrap multiscale
analysis.

This theorem implies all the usual forms of localization in the energy
interval I∞.

The usual forms of localization in an energy interval are commonly
proved by either a Green’s function multiscale analysis or the
fractional moment method.
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Eigensystem multiscale analysis in an energy interval

Localization on the energy interval

We fix ν > d
2 , and let T0 be the operator on `2(Zd) given by

multiplication by the function T0(x) := 〈x〉ν , where 〈x〉=
√

1 +‖x‖2.

Corollary

Suppose the conclusions of the theorem hold for an Anderson model Hω .
Then the following holds with probability one (I = I∞, m = m∞):

1 Hω has pure point spectrum in the interval I .

2 If ψλ is an eigenfunction of Hω with eigenvalue λ ∈ I , then ψλ is
exponentially localized with rate of decay m

20hI (λ ), more precisely,

|ψλ (x)| ≤ Cω,λ

∥∥T−1
0 ψ

∥∥ e− m
20hI (λ)‖x‖ for all x ∈ Rd .

3 Given λ ∈ I and ψ ∈ χ{λ}(Hω ), for all x ,y ∈ Zd we have

|ψ(x)| |ψ(y)| ≤ Cm,ω,ν (hI (λ ))−ν
∥∥T−1

0 ψ
∥∥2 〈x〉2ν×

e2νmhI (λ)(2d log〈x〉)
1
ξ

e−
m
20hI (λ)‖y−x‖.
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Eigensystem multiscale analysis in an energy interval

Initial step at the bottom of the spectrum: fixed disorder

Let Hω be an Anderson model, and set E0 = inf Σ =−2d + inf supp µ, the
bottom of the almost sure spectrum of Hω .

We consider intervals at the
bottom of the spectrum, more precisely, intervals of the form
J = [E0,E0 +A) with A> 0. We set J̃ = (E0−A,E0 +A), so
J ∩Σ = J̃ ∩Σ, and call a box (m,J)-localizing if it is (m, J̃)-localizing.

The following proposition follows from a Lifshitz tails estimate.

Proposition

There exists a constant Cd ,µ > 0 such that, given ζ ∈ (0,1), for sufficiently
large L we have

inf
x∈Rd

P
{
HΛL(x) > E0 +Cd ,µL

− 2ζ

d

}
≥ 1− e−L

ζ

.

In particular, for all intervals Jζ (L) = [E0,E0 +Cd ,µL
− 2ζ

d ) and all m > 0,

inf
x∈Rd

P
{

ΛL(x) is (m,Jζ (L))-localizing for Hω

}
≥ 1− e−L

ζ

.
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We combine the Proposition with theTheorem, taking I0 = J̃ζ (L0), i.e.,

E = E0 and A0 = Cd ,µL
− 2ζ

d
0 , m0 = 1

9dCd ,µL
− 2ζ

d , m− = 1
9dCd ,µ , κ ′ = 2ζ

d .

We require 2ζ

d < τ− γβ , and then choose 0 < κ < τ− γβ −κ ′. We find

that can choose the exponents as desired as long as ζ < d
d+2 .

Theorem
Let Hω be an Anderson model, and fix 0 < ξ < ζ < d

d+2 . Then there

exists γ > 1 such that, if L0 is sufficiently large, for all L≥ L
γ

0 we have

inf
x∈Rd

P
{

ΛL(x) is (mζ ,∞,Jζ ,∞,J
L

1
γ

ζ ,∞)-localizing for Hω

}
≥ 1− e−L

ξ

,

where

Aζ ,∞ = Cd ,µL
− 2ζ

d
0

∞

∏
k=0

(
1−L

−κγk

0

)
≥ 1

2Cd ,µL
− 2ζ

d
0 , Jζ ,∞ = [E0,E0 +Aζ ,∞),

mζ ,∞ = 1
9dCd ,µL

− 2ζ

d

∞

∏
k=0

(
1−Cd , 1

9d Cd ,µ
L
−ργk

0

)
≥ 1

18dCd ,µL
− 2ζ

d .

The conclusions of the Theorem and the Corollary hold in the interval

Jζ ,∞. Note limL0→∞Aζ ,∞L
2ζ

d
0 = Cd ,µ and limL0→∞mζ ,∞L

2ζ

d =
Cd ,µ

9d .
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Eigensystem multiscale analysis in an energy interval

Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a
fixed interval at the bottom of the the spectrum.

Let Hg ,ω =−∆ +gVω , where g > 0, and assume {0} ∈ supp µ ⊂ [0,∞), so
E0 = inf Σ =−2d .
Then, given B > 0 and ζ ∈ (0,1), there exists gζ (L) such that for all
g ≥ gζ (L) we have

inf
x∈Rd

P
{
Hg ,ΛL(x) ≥−2d +B

}
≥ 1− (L+ 1)dK (g−1B)α ≥ 1−L−ζ .

It follows that, given ζ ∈ (0,1), for g ≥ gζ (L) and all m > 0 we have

inf
x∈Rd

P{ΛL(x) is (m, [−2d ,−2d +B))-localizing for Hg ,ω} ≥ 1− e−L
ζ

.
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inf
x∈Rd

P{ΛL(x) is (m, [−2d ,−2d +B))-localizing for Hg ,ω} ≥ 1− e−L
ζ

.
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Eigensystem multiscale analysis in an energy interval

Theorem

Let Hg ,ω be an Anderson model with disorder as above, and choose
appropriate exponents.

Given B > 0, let J(B) = [−2d ,−2d +B) and pick
0 <m ≤ 1

2 log(1 + B
4d ). Then, if L0 is sufficiently large, for all L≥ L

γ

0 and
g ≥ gζ (L0) we have

inf
x∈Rd

P
{

ΛL(x) is (m∞,J∞(B),(J∞(B))L
1
γ

)-localizing for Hg ,ω

}
≥ 1− e−L

ξ

,

where

A∞ = A∞(L0) = B
∞

∏
k=0

(
1−L

−κγk

0

)
, J∞ = J∞(L0) = [−2d ,−2d +A∞),

m∞ = m∞(L0) = m
∞

∏
k=0

(
1−Cd ,m−L

−ργk

0

)
.

In particular, the conclusions of the Theorem and Corollary hold in the
interval J∞. Moreover, limL0→∞A∞(L0) = B and limL0→∞m∞(L0) = m.
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Connection with Green’s functions

Decay of Green’s functions in (m, I )-localizing boxes

Lemma

Fix m− > 0. Let I = (E −A,E +A), with E ∈ R and A> 0, and m > 0.
Suppose that ΛL is (m, I )-localizing for H, where

m−L
−κ ′ ≤m ≤ 1

2 log
(
1 + A

4d

)
.

Let λ ∈ IL with dist{λ ,σ(HΛL
)} ≥ e−L

β

.

Then, letting GΛL
(λ ) = (HΛL

−λ )−1, we have

|GΛL
(λ ;x ,y)| ≤ e−m

′′hI (λ)‖x−y‖ for all x ,y ∈ ΛL with ‖x−y‖ ≥ L
100 ,

where
m′′ ≥m

(
1−Cd ,m−L

−(1−τ)
)
.
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Connection with Green’s functions

The main difficulty

Let ΛL be (m, I )-localizing for H, and let {(ϕν ,ν)}
ν∈σ(HΛL

) be an

(m, I )-localized eigensystem for HΛL
.

Let x ,y ∈ ΛL with ‖x−y‖ ≥ L
100 .

Given ν ∈ σI (HΛL
), since either ‖x−xν‖ ≥ Lτ or ‖y −xν‖ ≥ Lτ , we have

|ϕν (x)ϕν (y)| ≤ e−m
′hI (ν)‖x−y‖, where m′ ≥m(1−100Lτ−1).

GΛL
(λ ;x ,y) = ∑

ν∈σI (HΛ`
)

(ν−λ )−1
ϕν (x)ϕν (y) + ∑

ν∈σR\I (HΛ`
)

(ν−λ )−1
ϕν (x)ϕν (y).

We know

∣∣∣∣∣∣ ∑
ν∈σI (HΛ`

)

(ν−λ )−1
ϕν (x)ϕν (y)

∣∣∣∣∣∣≤ eL
β

∑
ν∈σI (HΛ`

)

e−m
′hI (ν)‖x−y‖.

How can we estimate ∑ν∈σR\I (HΛ`
)(ν−λ )−1ϕν (x)ϕν (y) ? We have

no information on ϕν for ν /∈ I . Where does the decay comes from?
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