# Eigensystem multiscale analysis for Anderson localization in energy intervals I

Abel Klein University of California, Irvine

joint work with Alexander Elgart

QMath13: Mathematical Results in Quantum Physics Georgia Tech October 9, 2016

伺 ト く ヨ ト く ヨ ト

### **Basic notation**

► *H* will always denote a discrete Schrödinger operator, that is, an operator  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$ , where where  $\Delta$  is the (centered) discrete Laplacian:  $(\Delta \varphi)(x) := \sum_{|y-x|=1} \varphi(y)$  for  $\varphi \in \ell^2(\mathbb{Z}^d)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

### **Basic notation**

► *H* will always denote a discrete Schrödinger operator, that is, an operator  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$ , where where  $\Delta$  is the (centered) discrete Laplacian:  $(\Delta \varphi)(x) := \sum_{|y-x|=1} \varphi(y)$  for  $\varphi \in \ell^2(\mathbb{Z}^d)$ .

▶ If  $\Theta \subset \mathbb{Z}^d$ , we let  $H_\Theta$  be the restriction of  $\chi_\Theta H \chi_\Theta$  to  $\ell^2(\Theta)$ .



### **Basic notation**

► *H* will always denote a discrete Schrödinger operator, that is, an operator  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$ , where where  $\Delta$  is the (centered) discrete Laplacian:  $(\Delta \varphi)(x) := \sum_{|y-x|=1} \varphi(y)$  for  $\varphi \in \ell^2(\mathbb{Z}^d)$ .

▶ If  $\Theta \subset \mathbb{Z}^d$ , we let  $H_\Theta$  be the restriction of  $\chi_\Theta H \chi_\Theta$  to  $\ell^2(\Theta)$ .

▶ Given  $\Phi \subset \Theta \subset \mathbb{Z}^d$ , we consider  $\ell^2(\Phi) \subset \ell^2(\Theta)$  by extending functions on  $\Phi$  to functions on  $\Theta$  that are identically 0 on  $\Theta \setminus \Phi$ .

(4月) (日) (日) 日

### **Basic notation**

► *H* will always denote a discrete Schrödinger operator, that is, an operator  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$ , where where  $\Delta$  is the (centered) discrete Laplacian:  $(\Delta \varphi)(x) := \sum_{|y-x|=1} \varphi(y)$  for  $\varphi \in \ell^2(\mathbb{Z}^d)$ .

▶ If  $\Theta \subset \mathbb{Z}^d$ , we let  $H_\Theta$  be the restriction of  $\chi_\Theta H \chi_\Theta$  to  $\ell^2(\Theta)$ .

▶ Given  $\Phi \subset \Theta \subset \mathbb{Z}^d$ , we consider  $\ell^2(\Phi) \subset \ell^2(\Theta)$  by extending functions on  $\Phi$  to functions on  $\Theta$  that are identically 0 on  $\Theta \setminus \Phi$ .

▶  $||x|| = \max_{j=1,2,...,d} |x_j|$  and  $|x| = \sqrt{\sum_{j=1}^d x_j^2}$  for  $x \in \mathbb{R}^d$ .

▲母 ▲ ヨ ▲ ヨ ▲ ヨ ● の Q @

## **Basic notation**

► *H* will always denote a discrete Schrödinger operator, that is, an operator  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$ , where where  $\Delta$  is the (centered) discrete Laplacian:  $(\Delta \varphi)(x) := \sum_{|y-x|=1} \varphi(y)$  for  $\varphi \in \ell^2(\mathbb{Z}^d)$ .

▶ If  $\Theta \subset \mathbb{Z}^d$ , we let  $H_\Theta$  be the restriction of  $\chi_\Theta H \chi_\Theta$  to  $\ell^2(\Theta)$ .

▶ Given  $\Phi \subset \Theta \subset \mathbb{Z}^d$ , we consider  $\ell^2(\Phi) \subset \ell^2(\Theta)$  by extending functions on  $\Phi$  to functions on  $\Theta$  that are identically 0 on  $\Theta \setminus \Phi$ .

 $\blacktriangleright ||x|| = \max_{j=1,2,\dots,d} |x_j| \quad \text{and} \quad |x| = \sqrt{\sum_{j=1}^d x_j^2} \quad \text{for} \quad x \in \mathbb{R}^d.$ 

▶ We consider  $\mathbb{Z}^d \subset \mathbb{R}^d$  and use boxes in  $\mathbb{Z}^d$  centered at points in  $\mathbb{R}^d$ :

 $\Lambda_L(x) = \Lambda_L^{\mathbb{R}}(x) \cap \mathbb{Z}^d, \text{ where } x \in \mathbb{R}^d \text{ and } \Lambda_L^{\mathbb{R}}(x) = \left\{ y \in \mathbb{R}^d; \|y - x\| \leq \frac{L}{2} \right\}.$ 

#### **Basic** notation

► *H* will always denote a discrete Schrödinger operator, that is, an operator  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$ , where where  $\Delta$  is the (centered) discrete Laplacian:  $(\Delta \varphi)(x) := \sum_{|y-x|=1} \varphi(y)$  for  $\varphi \in \ell^2(\mathbb{Z}^d)$ .

▶ If  $\Theta \subset \mathbb{Z}^d$ , we let  $H_\Theta$  be the restriction of  $\chi_\Theta H \chi_\Theta$  to  $\ell^2(\Theta)$ .

▶ Given  $\Phi \subset \Theta \subset \mathbb{Z}^d$ , we consider  $\ell^2(\Phi) \subset \ell^2(\Theta)$  by extending functions on  $\Phi$  to functions on  $\Theta$  that are identically 0 on  $\Theta \setminus \Phi$ .

►  $||x|| = \max_{j=1,2,...,d} |x_j|$  and  $|x| = \sqrt{\sum_{j=1}^d x_j^2}$  for  $x \in \mathbb{R}^d$ .

▶ We consider  $\mathbb{Z}^d \subset \mathbb{R}^d$  and use boxes in  $\mathbb{Z}^d$  centered at points in  $\mathbb{R}^d$ :

 $\Lambda_L(x) = \Lambda_L^{\mathbb{R}}(x) \cap \mathbb{Z}^d, \text{ where } x \in \mathbb{R}^d \text{ and } \Lambda_L^{\mathbb{R}}(x) = \left\{ y \in \mathbb{R}^d; \|y - x\| \leq \frac{L}{2} \right\}.$ 

Note that  $(L-2)^d < |\Lambda_L(x)| \le (L+1)^d$  for  $L \ge 2$ .

### Exponents

We fix  $\xi, \zeta, \beta, \tau \in (0,1)$  and  $\gamma > 1$ 

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 回 → の Q ()

#### Exponents

 $\begin{array}{ll} \text{We fix} \quad \xi,\zeta,\beta,\tau\in(0,1) \quad \text{and} \quad \gamma>1 \quad \text{such that} \\ \\ 0<\xi<\zeta<\beta<\frac{1}{\gamma}<1<\gamma<\sqrt{\frac{\zeta}{\xi}} \ \text{and} \ \max\left\{\gamma\beta,\frac{(\gamma-1)\beta+1}{\gamma}\right\}<\tau<1, \end{array}$ 

・ロト ・母 ト ・ヨ ト ・ヨ ・ つへの

#### Exponents

We fix  $\xi, \zeta, \beta, \tau \in (0,1)$  and  $\gamma > 1$  such that  $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$  and  $\max\left\{\gamma\beta, \frac{(\gamma-1)\beta+1}{\gamma}\right\} < \tau < 1$ , take  $\widetilde{\zeta} = \frac{\zeta+\beta}{2} \in (\zeta,\beta)$  and  $\widetilde{\tau} = \frac{1+\tau}{2} \in (\tau,1)$ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

#### **Exponents**

Notatio

We fix  $\xi, \zeta, \beta, \tau \in (0,1)$  and  $\gamma > 1$  such that  $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$  and  $\max\left\{\gamma\beta, \frac{(\gamma-1)\beta+1}{\gamma}\right\} < \tau < 1$ , take  $\widetilde{\zeta} = \frac{\zeta+\beta}{2} \in (\zeta,\beta)$  and  $\widetilde{\tau} = \frac{1+\tau}{2} \in (\tau,1)$ .

In addition we fix  $\kappa \in (0,1)$  and  $\kappa' \in [0,1)$ 

lein

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

#### Nota

#### Exponents

We fix  $\xi, \zeta, \beta, \tau \in (0,1)$  and  $\gamma > 1$  such that  $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$  and  $\max\left\{\gamma\beta, \frac{(\gamma-1)\beta+1}{\gamma}\right\} < \tau < 1$ , take  $\widetilde{\zeta} = \frac{\zeta+\beta}{2} \in (\zeta,\beta)$  and  $\widetilde{\tau} = \frac{1+\tau}{2} \in (\tau,1)$ .

In addition we fix  $\kappa \in (0,1)$  and  $\kappa' \in [0,1)$  such that

 $\kappa + \kappa' < \tau - \gamma \beta$ ,

#### Exponents

We fix  $\xi, \zeta, \beta, \tau \in (0,1)$  and  $\gamma > 1$  such that  $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$  and  $\max\left\{\gamma\beta, \frac{(\gamma-1)\beta+1}{\gamma}\right\} < \tau < 1$ , take  $\widetilde{\zeta} = \frac{\zeta+\beta}{2} \in (\zeta,\beta)$  and  $\widetilde{\tau} = \frac{1+\tau}{2} \in (\tau,1)$ .

In addition we fix  $\kappa \in (0,1)$  and  $\kappa' \in [0,1)$  such that

 $\kappa + \kappa' < \tau - \gamma \beta$ ,

set 
$$\rho = \min\left\{\kappa, \frac{1-\tau}{2}, \gamma\tau - (\gamma-1)\widetilde{\zeta} - 1\right\} \in [\kappa, 1),$$

#### Exponents

We fix  $\xi, \zeta, \beta, \tau \in (0,1)$  and  $\gamma > 1$  such that  $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$  and  $\max\left\{\gamma\beta, \frac{(\gamma-1)\beta+1}{\gamma}\right\} < \tau < 1$ , take  $\widetilde{\zeta} = \frac{\zeta+\beta}{2} \in (\zeta,\beta)$  and  $\widetilde{\tau} = \frac{1+\tau}{2} \in (\tau,1)$ .

In addition we fix  $\kappa \in (0,1)$  and  $\kappa' \in [0,1)$  such that

 $\kappa + \kappa' < \tau - \gamma \beta$ ,

set 
$$\rho = \min\left\{\kappa, \frac{1-\tau}{2}, \gamma\tau - (\gamma-1)\widetilde{\zeta} - 1\right\} \in [\kappa, 1),$$

and pick  $\zeta \in (0, 1-\rho].$ 

Let  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$  and  $\Theta \subset \mathbb{Z}^d$ .



Let  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$  and  $\Theta \subset \mathbb{Z}^d$ .

• We call  $(\varphi, \lambda)$  an eigenpair for  $H_{\Theta}$  if  $\lambda$  is an eigenvalue for  $H_{\Theta}$  and  $\varphi$  is a corresponding normalized eigenfunction, that is,

 $H_{\Theta} \phi = \lambda \phi$ , where  $\lambda \in \mathbb{R}$  and  $\phi \in \ell^2(\Theta)$  with  $\|\phi\| = 1$ .

Let  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$  and  $\Theta \subset \mathbb{Z}^d$ .

• We call  $(\varphi, \lambda)$  an eigenpair for  $H_{\Theta}$  if  $\lambda$  is an eigenvalue for  $H_{\Theta}$  and  $\varphi$  is a corresponding normalized eigenfunction, that is,

 $H_{\Theta} \phi = \lambda \phi$ , where  $\lambda \in \mathbb{R}$  and  $\phi \in \ell^2(\Theta)$  with  $\|\phi\| = 1$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

A collection {(φ<sub>j</sub>, λ<sub>j</sub>)}<sub>j∈J</sub> of eigenpairs for H<sub>Θ</sub> will be called an eigensystem for H<sub>Θ</sub> if {φ<sub>j</sub>}<sub>i∈J</sub> is an orthonormal basis for ℓ<sup>2</sup>(Θ).

Let  $H = -\Delta + V$  on  $\ell^2(\mathbb{Z}^d)$  and  $\Theta \subset \mathbb{Z}^d$ .

• We call  $(\varphi, \lambda)$  an eigenpair for  $H_{\Theta}$  if  $\lambda$  is an eigenvalue for  $H_{\Theta}$  and  $\varphi$  is a corresponding normalized eigenfunction, that is,

 $H_{\Theta} \phi = \lambda \phi$ , where  $\lambda \in \mathbb{R}$  and  $\phi \in \ell^2(\Theta)$  with  $\|\phi\| = 1$ .

- A collection {(φ<sub>j</sub>, λ<sub>j</sub>)}<sub>j∈J</sub> of eigenpairs for H<sub>Θ</sub> will be called an eigensystem for H<sub>Θ</sub> if {φ<sub>j</sub>}<sub>i∈J</sub> is an orthonormal basis for ℓ<sup>2</sup>(Θ).
- If Θ is finite and all eigenvalues of H<sub>Θ</sub> are simple, we can rewrite an eigensystem as {(φ<sub>λ</sub>, λ)}<sub>λ∈σ(H<sub>Θ</sub>)</sub>.

# Level spacing boxes and localized eigenfunctions

#### Definition

Given L > 0, a finite set  $\Theta \subset \mathbb{Z}^d$  will be called *L*-level spacing for *H* if all eigenvalues of  $H_{\Theta}$  are simple, and

 $\left|\lambda-\lambda'\right|\geq {\rm e}^{-L^\beta}\quad {\rm for \ all}\quad \lambda,\lambda'\in\sigma({\cal H}_\Theta),\;\lambda\neq\lambda'.$ 

# Level spacing boxes and localized eigenfunctions

#### Definition

Given L > 0, a finite set  $\Theta \subset \mathbb{Z}^d$  will be called *L*-level spacing for *H* if all eigenvalues of  $H_{\Theta}$  are simple, and

 $\left|\lambda-\lambda'\right|\geq {\rm e}^{-L^\beta}\quad {\rm for \ all}\quad \lambda,\lambda'\in\sigma(H_\Theta),\ \lambda\neq\lambda'.$ 

A box  $\Lambda_L$  will be called level spacing for H if it is L-level spacing for H.

# Level spacing boxes and localized eigenfunctions

#### Definition

Given L > 0, a finite set  $\Theta \subset \mathbb{Z}^d$  will be called *L*-level spacing for *H* if all eigenvalues of  $H_{\Theta}$  are simple, and

$$ig|\lambda-\lambda'ig|\geq {
m e}^{-L^eta}$$
 for all  $\lambda,\lambda'\in\sigma(H_\Theta),\;\lambda
eq\lambda'.$ 

A box  $\Lambda_L$  will be called level spacing for H if it is L-level spacing for H.

#### Definition

Let  $\Lambda_L$  be a box,  $x \in \Lambda_L$ , and  $m \ge 0$ . Then  $\varphi \in \ell^2(\Lambda_L)$  is said to be (x, m)-localized if  $\|\varphi\| = 1$  and

 $|\varphi(y)| \le e^{-m||y-x||}$  for all  $y \in \Lambda_L$  with  $||y-x|| \ge L^{\tau}$ .

Basic definitions

Localizing boxes in energy intervals

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \leq A$ , and let m > 0. Basic definitions

Localizing boxes in energy intervals

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \leq A$ , and let m > 0. A box  $\Lambda_L$  will be called (m, J, I)-localizing for H if

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \leq A$ , and let m > 0. A box  $\Lambda_L$  will be called (m, J, I)-localizing for H if

•  $\Lambda_L$  is level spacing for *H*.

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \le A$ , and let m > 0. A box  $\Lambda_L$  will be called (m, J, I)-localizing for H if

- $\Lambda_L$  is level spacing for H.
- **2** There exists an (m, J, I)-localized eigensystem for  $H_{\Lambda_L}$ :

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \leq A$ , and let m > 0. A box  $\Lambda_L$  will be called (m, J, I)-localizing for H if

- $\Lambda_L$  is level spacing for *H*.
- There exists an (m, J, I)-localized eigensystem for H<sub>ΛL</sub>: an eigensystem {(φ<sub>V</sub>, v)}<sub>V∈σ(H<sub>ΛL</sub>)</sub> for H<sub>ΛL</sub> such that for all v ∈ σ(H<sub>ΛL</sub>) the eigenfunction φ<sub>V</sub> is (x<sub>V</sub>, mχ<sub>J</sub>(v)h<sub>I</sub>(v))-localized for some x<sub>V</sub> ∈ Λ<sub>L</sub>, where the modulating function h<sub>I</sub> is defined by

$$h_I(t) = h\left(rac{t-E}{A}
ight) \ \ ext{for} \ \ t \in \mathbb{R}, \ \ ext{where} \ \ h(s) = egin{cases} 1-s^2 & ext{if} \ \ s \in [0,1) \\ 0 & ext{otherwise} \end{cases}.$$

伺 と く ヨ と く ヨ と

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \leq A$ , and let m > 0. A box  $\Lambda_L$  will be called (m, J, I)-localizing for H if

- $\Lambda_L$  is level spacing for *H*.
- There exists an (m, J, I)-localized eigensystem for H<sub>ΛL</sub>: an eigensystem {( $φ_V, v$ )}<sub>V∈σ(H<sub>ΛL</sub>)</sub> for H<sub>ΛL</sub> such that for all  $v \in σ(H_{ΛL})$  the eigenfunction  $φ_V$  is ( $x_V, m\chi_J(v)h_I(v)$ )-localized for some  $x_V \in Λ_L$ , where the modulating function  $h_I$  is defined by

 $h_I(t) = h\left(\frac{t-E}{A}\right)$  for  $t \in \mathbb{R}$ , where  $h(s) = \begin{cases} 1-s^2 & \text{if } s \in [0,1) \\ 0 & \text{otherwise} \end{cases}$ .

 $\Lambda_L$  is (m, I)-localizing for H if  $\Lambda_L$  is (m, I, I)-localizing for H.

Definition Let  $J = (E - B, E + B) \subset I = (E - A, E + A)$ , where  $E \in \mathbb{R}$  and  $0 < B \le A$ , and let m > 0. A box  $\Lambda_L$  will be called (m, J, I)-localizing for H if

- $\Lambda_L$  is level spacing for *H*.
- There exists an (m, J, I)-localized eigensystem for H<sub>ΛL</sub>: an eigensystem {( $\varphi_V, v$ )}<sub>V∈σ(H<sub>ΛL</sub>)</sub> for H<sub>ΛL</sub> such that for all  $v \in \sigma(H_{\Lambda_L})$  the eigenfunction  $\varphi_V$  is ( $x_V, m\chi_J(v)h_I(v)$ )-localized for some  $x_V \in \Lambda_L$ , where the modulating function  $h_I$  is defined by

$$h_l(t) = h\left(rac{t-E}{A}
ight) \ \ ext{for} \ \ t \in \mathbb{R}, \ \ ext{where} \ \ h(s) = egin{cases} 1-s^2 & ext{if} \ \ s \in [0,1) \ 0 & ext{otherwise} \end{cases}.$$

 $\Lambda_L$  is (m, I)-localizing for H if  $\Lambda_L$  is (m, I, I)-localizing for H.

Note that  $\chi_J(v)h_I(v)) > 0 \iff v \in J.$ 

The Anderson model is the random Schrödinger operator

 $H_{\omega} := -\Delta + V_{\omega}$  on  $\ell^2(\mathbb{Z}^d)$ ,



The Anderson model is the random Schrödinger operator

 $H_\omega:=-\Delta+V_\omega$  on  $\ell^2(\mathbb{Z}^d),$  where

•  $\Delta$  is the (centered) discrete Laplacian:

$$(\Delta arphi)(x) := \sum_{y \in \mathbb{Z}^d; \; |y-x|=1} arphi(y) \; \; \; ext{for} \; \; \; arphi \in \ell^2(\mathbb{Z}^d).$$

<□> < □> < □> < □> = □

The Anderson model is the random Schrödinger operator

 $H_{\omega}:=-\Delta+V_{\omega}$  on  $\ell^2(\mathbb{Z}^d),$  where

•  $\Delta$  is the (centered) discrete Laplacian:

$$(\Delta arphi)(x) := \sum_{y \in \mathbb{Z}^d; \; |y-x|=1} arphi(y) \; \; ext{ for } \; \; arphi \in \ell^2(\mathbb{Z}^d).$$

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

②  $V_{\omega}(x) = \omega_x$  for  $x \in \mathbb{Z}^d$ , where  $\omega = \{\omega_x\}_{x \in \mathbb{Z}^d}$  are i.i.d.r.v.'s with a non-degenerate probability distribution  $\mu$  with bounded support.

The Anderson model is the random Schrödinger operator

 $H_{\omega} := -\Delta + V_{\omega}$  on  $\ell^2(\mathbb{Z}^d)$ , where

**1**  $\Delta$  is the (centered) discrete Laplacian:

$$(\Delta arphi)(x) := \sum_{y \in \mathbb{Z}^d; \; |y-x|=1} arphi(y) \; \; ext{ for } \; \; arphi \in \ell^2(\mathbb{Z}^d).$$

V<sub>ω</sub>(x) = ω<sub>x</sub> for x ∈ Z<sup>d</sup>, where ω = {ω<sub>x</sub>}<sub>x∈Z<sup>d</sup></sub> are i.i.d.r.v.'s with a non-degenerate probability distribution μ with bounded support. We assume μ is Hölder continuous of order α ∈ (<sup>1</sup>/<sub>2</sub>, 1]:

 $S_{\mu}(t) \leq Kt^{lpha}$  for all  $t \in [0,1]$ ,

(4月) (3日) (3日) 日

where K is a constant and  $S_{\mu}(t) := \sup_{a \in \mathbb{R}} \mu \{ [a, a+t] \}.$ 

The Anderson model is the random Schrödinger operator

 $H_{\omega} := -\Delta + V_{\omega}$  on  $\ell^2(\mathbb{Z}^d)$ , where

**1**  $\Delta$  is the (centered) discrete Laplacian:

$$(\Delta arphi)(x) := \sum_{y \in \mathbb{Z}^d; \; |y-x|=1} arphi(y) \; \; ext{ for } \; \; arphi \in \ell^2(\mathbb{Z}^d).$$

V<sub>ω</sub>(x) = ω<sub>x</sub> for x ∈ Z<sup>d</sup>, where ω = {ω<sub>x</sub>}<sub>x∈Z<sup>d</sup></sub> are i.i.d.r.v.'s with a non-degenerate probability distribution μ with bounded support. We assume μ is Hölder continuous of order α ∈ (<sup>1</sup>/<sub>2</sub>, 1]:

 $S_{\mu}(t) \leq K t^{lpha}$  for all  $t \in [0,1]$ ,

where K is a constant and  $S_{\mu}(t) := \sup_{a \in \mathbb{R}} \mu \{ [a, a+t] \}.$ 

Remark:  $\sigma(H_{\omega}) = \Sigma := [-2d, 2d] + \operatorname{supp} \mu$  with probability one.

# Probability estimate for level spacing

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami's estimate.

御 と くきと くきと

# Probability estimate for level spacing

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami's estimate.

Lemma (Klein-Molchanov)

Let  $H_{\omega}$  be an Anderson model,  $\Theta \subset \mathbb{Z}^d$ , and L > 1. Then,

# Probability estimate for level spacing

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami's estimate.

Lemma (Klein-Molchanov)

Let  $H_{\omega}$  be an Anderson model,  $\Theta \subset \mathbb{Z}^d$ , and L > 1. Then,

 $\mathbb{P}\left\{\Theta \text{ is $L$-level spacing for $H_{\omega}$}\right\} \geq 1 - Y_{\mu} \left|\Theta\right|^2 e^{-(2\alpha - 1)L^{\beta}}.$
# Probability estimate for level spacing

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami's estimate.

### Lemma (Klein-Molchanov)

Let  $H_{\omega}$  be an Anderson model,  $\Theta \subset \mathbb{Z}^d$ , and L > 1. Then,

 $\mathbb{P}\{\Theta \text{ is } L\text{-level spacing for } H_{\omega}\} \geq 1 - Y_{\mu} |\Theta|^2 e^{-(2\alpha - 1)L^{\beta}}.$ 

In the special case of a box  $\Lambda_L$ , we have  $\mathbb{P} \{ \Lambda_L \text{ is level spacing for } H_{\omega} \} \ge 1 - Y_{\mu} (L+1)^{2d} e^{-(2\alpha-1)L^{\beta}}.$ 

Let I = (E - A, E + A) with  $E \in \mathbb{R}$  and A > 0, and L > 1.

▲ロ ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ���?

Let I = (E - A, E + A) with  $E \in \mathbb{R}$  and A > 0, and L > 1. We set  $I_L = (E - A(1 - L^{-\kappa}), E + A(1 - L^{-\kappa})),$   $I^L = (E - A(1 - L^{-\kappa})^{-1}, E + A(1 - L^{-\kappa})^{-1}).$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let I = (E - A, E + A) with  $E \in \mathbb{R}$  and A > 0, and L > 1. We set  $I_L = (E - A(1 - L^{-\kappa}), E + A(1 - L^{-\kappa})),$   $I^L = (E - A(1 - L^{-\kappa})^{-1}, E + A(1 - L^{-\kappa})^{-1}).$ 

Given m > 0, C > 0, we set

$$A_{\infty} = A_{\infty}(A, L) = A \prod_{k=0}^{\infty} \left( 1 - L^{-\kappa \gamma^{k}} \right),$$
  

$$I_{\infty} = I_{\infty}(A, L) = \left( E - A_{\infty}(A, L), E + A_{\infty}(A, L) \right),$$
  

$$m_{\infty} = m_{\infty}(m, L, C) = m \prod_{k=0}^{\infty} \left( 1 - CL^{-\rho \gamma^{k}} \right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let I = (E - A, E + A) with  $E \in \mathbb{R}$  and A > 0, and L > 1. We set  $I_L = (E - A(1 - L^{-\kappa}), E + A(1 - L^{-\kappa})),$   $I^L = (E - A(1 - L^{-\kappa})^{-1}, E + A(1 - L^{-\kappa})^{-1}).$ 

Given m > 0, C > 0, we set

$$A_{\infty} = A_{\infty}(A, L) = A \prod_{k=0}^{\infty} \left( 1 - L^{-\kappa \gamma^{k}} \right),$$
  

$$I_{\infty} = I_{\infty}(A, L) = \left( E - A_{\infty}(A, L), E + A_{\infty}(A, L) \right),$$
  

$$m_{\infty} = m_{\infty}(m, L, C) = m \prod_{k=0}^{\infty} \left( 1 - CL^{-\rho \gamma^{k}} \right).$$

Note that

$$\lim_{L\to\infty}A_{\infty}(A,L)=A \quad \text{and} \quad \lim_{L\to\infty}m_{\infty}(m,L,C)=m.$$

#### Theorem

Let  $H_{\omega}$  be an Anderson model. Given  $m_{-} > 0$ , there exists a a finite scale  $\mathscr{L} = \mathscr{L}(d, m_{-})$  and a constant  $C_{d,m_{-}} > 0$  with the following property:

### Theorem

Let  $H_{\omega}$  be an Anderson model. Given  $m_{-} > 0$ , there exists a a finite scale  $\mathscr{L} = \mathscr{L}(d, m_{-})$  and a constant  $C_{d,m_{-}} > 0$  with the following property: Suppose for some scale  $L_0 \ge \mathscr{L}$  we have

 $\inf_{x \in \mathbb{R}^d} \mathbb{P} \{ \Lambda_{L_0}(x) \text{ is } (m_0, I_0) \text{-localizing for } H_{\omega} \} \geq 1 - e^{-L_0^{\zeta}},$ 

#### Theorem

Let  $H_{\omega}$  be an Anderson model. Given  $m_{-} > 0$ , there exists a a finite scale  $\mathscr{L} = \mathscr{L}(d, m_{-})$  and a constant  $C_{d,m_{-}} > 0$  with the following property: Suppose for some scale  $L_0 \ge \mathscr{L}$  we have

 $\inf_{x \in \mathbb{R}^d} \mathbb{P} \{ \Lambda_{L_0}(x) \text{ is } (m_0, I_0) \text{-localizing for } H_{\omega} \} \geq 1 - e^{-L_0^{\zeta}},$ 

where  $I_0 = (E - A_0, E + A_0) \subset \mathbb{R}$ , with  $E \in \mathbb{R}$  and  $A_0 > 0$ , and

 $m_-L_0^{-\kappa'} \leq m_0 \leq \frac{1}{2}\log\left(1+\frac{A_0}{4d}\right).$ 

#### Theorem

Let  $H_{\omega}$  be an Anderson model. Given  $m_{-} > 0$ , there exists a a finite scale  $\mathscr{L} = \mathscr{L}(d, m_{-})$  and a constant  $C_{d,m_{-}} > 0$  with the following property: Suppose for some scale  $L_0 \ge \mathscr{L}$  we have

 $\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } (m_0, I_0) \text{-localizing for } H_{\omega}\} \geq 1 - e^{-L_0^{\zeta}},$ 

where  $I_0 = (E - A_0, E + A_0) \subset \mathbb{R}$ , with  $E \in \mathbb{R}$  and  $A_0 > 0$ , and

$$m_-L_0^{-\kappa'} \leq m_0 \leq \frac{1}{2}\log\left(1+\frac{A_0}{4d}\right)$$

Let  $A_{\infty} = A_{\infty}(A_0, L_0)$ ,  $I_{\infty} = I_{\infty}(A_0, L_0)$ , and  $m_{\infty} = m_{\infty}(m_0, L_0, C_{d, m_-})$ .

### Theorem

Let  $H_{\omega}$  be an Anderson model. Given  $m_{-} > 0$ , there exists a a finite scale  $\mathscr{L} = \mathscr{L}(d, m_{-})$  and a constant  $C_{d,m_{-}} > 0$  with the following property: Suppose for some scale  $L_0 \ge \mathscr{L}$  we have

 $\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } (m_0, I_0) \text{-localizing for } H_{\omega}\} \geq 1 - e^{-L_0^{\zeta}},$ 

where  $I_0 = (E - A_0, E + A_0) \subset \mathbb{R}$ , with  $E \in \mathbb{R}$  and  $A_0 > 0$ , and

$$m_-L_0^{-\kappa'} \leq m_0 \leq \frac{1}{2}\log\left(1+\frac{A_0}{4d}\right)$$

Let  $A_{\infty} = A_{\infty}(A_0, L_0)$ ,  $I_{\infty} = I_{\infty}(A_0, L_0)$ , and  $m_{\infty} = m_{\infty}(m_0, L_0, C_{d,m_-})$ . Then for all  $L \ge L_0^{\gamma}$  we have

$$\inf_{x\in\mathbb{R}^d} \mathbb{P}\left\{\Lambda_L(x) \text{ is } (m_{\infty}, I_{\infty}, I_{\infty}^{L^{\frac{1}{\gamma}}}) \text{-localizing for } H_{\omega}\right\} \geq 1 - e^{-L^{\xi}},$$



• Theorem previously proved in the high disorder case, where  $I_0 = \mathbb{R}$ .

・ロト ・回ト ・ヨト ・ヨト

3

# Comments

- Theorem previously proved in the high disorder case, where  $I_0 = \mathbb{R}$ .
- Theorem extended by Klein and Tsang to a bootstrap multiscale analysis.

|圖 | | 国 | | 国 |

# Comments

- Theorem previously proved in the high disorder case, where  $I_0 = \mathbb{R}$ .
- Theorem extended by Klein and Tsang to a bootstrap multiscale analysis.
- This theorem implies all the usual forms of localization in the energy interval *I*<sub>∞</sub>.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

# Comments

- Theorem previously proved in the high disorder case, where  $I_0 = \mathbb{R}$ .
- Theorem extended by Klein and Tsang to a bootstrap multiscale analysis.
- This theorem implies all the usual forms of localization in the energy interval  $I_{\infty}$ .
- The usual forms of localization in an energy interval are commonly proved by either a Green's function multiscale analysis or the fractional moment method.

・ 同 ト ・ ヨ ト ・ ヨ ト

We fix  $v > \frac{d}{2}$ , and let  $T_0$  be the operator on  $\ell^2(\mathbb{Z}^d)$  given by multiplication by the function  $T_0(x) := \langle x \rangle^v$ , where  $\langle x \rangle = \sqrt{1 + ||x||^2}$ .

<□> < □> < □> < □> = □

We fix  $v > \frac{d}{2}$ , and let  $T_0$  be the operator on  $\ell^2(\mathbb{Z}^d)$  given by multiplication by the function  $T_0(x) := \langle x \rangle^v$ , where  $\langle x \rangle = \sqrt{1 + ||x||^2}$ . Corollary

Suppose the conclusions of the theorem hold for an Anderson model  $H_{\omega}$ .

We fix  $v > \frac{d}{2}$ , and let  $T_0$  be the operator on  $\ell^2(\mathbb{Z}^d)$  given by multiplication by the function  $T_0(x) := \langle x \rangle^v$ , where  $\langle x \rangle = \sqrt{1 + ||x||^2}$ . Corollary

Suppose the conclusions of the theorem hold for an Anderson model  $H_{\omega}$ . Then the following holds with probability one  $(I = I_{\infty}, m = m_{\infty})$ :

We fix  $v > \frac{d}{2}$ , and let  $T_0$  be the operator on  $\ell^2(\mathbb{Z}^d)$  given by multiplication by the function  $T_0(x) := \langle x \rangle^v$ , where  $\langle x \rangle = \sqrt{1 + ||x||^2}$ . Corollary

Suppose the conclusions of the theorem hold for an Anderson model  $H_{\omega}$ . Then the following holds with probability one  $(I = I_{\infty}, m = m_{\infty})$ :

•  $H_{\omega}$  has pure point spectrum in the interval I.

We fix  $v > \frac{d}{2}$ , and let  $T_0$  be the operator on  $\ell^2(\mathbb{Z}^d)$  given by multiplication by the function  $T_0(x) := \langle x \rangle^v$ , where  $\langle x \rangle = \sqrt{1 + ||x||^2}$ . Corollary

Suppose the conclusions of the theorem hold for an Anderson model  $H_{\omega}$ . Then the following holds with probability one  $(I = I_{\infty}, m = m_{\infty})$ :

**1**  $H_{\omega}$  has pure point spectrum in the interval **1**.

**a** If  $\psi_{\lambda}$  is an eigenfunction of  $H_{\omega}$  with eigenvalue  $\lambda \in I$ , then  $\psi_{\lambda}$  is exponentially localized with rate of decay  $\frac{m}{20}h_{I}(\lambda)$ , more precisely,

 $|\psi_{\lambda}(x)| \leq C_{\omega,\lambda} \left\| T_0^{-1} \psi \right\| e^{-rac{m}{20}h_l(\lambda) \|x\|}$  for all  $x \in \mathbb{R}^d$ .

We fix  $v > \frac{d}{2}$ , and let  $T_0$  be the operator on  $\ell^2(\mathbb{Z}^d)$  given by multiplication by the function  $T_0(x) := \langle x \rangle^v$ , where  $\langle x \rangle = \sqrt{1 + ||x||^2}$ . Corollary

Suppose the conclusions of the theorem hold for an Anderson model  $H_{\omega}$ . Then the following holds with probability one  $(I = I_{\infty}, m = m_{\infty})$ :

- **1**  $H_{\omega}$  has pure point spectrum in the interval **I**.
- **2** If  $\psi_{\lambda}$  is an eigenfunction of  $H_{\omega}$  with eigenvalue  $\lambda \in I$ , then  $\psi_{\lambda}$  is exponentially localized with rate of decay  $\frac{m}{20}h_{I}(\lambda)$ , more precisely,

 $|\psi_{\lambda}(x)| \leq C_{\omega,\lambda} \left\| T_0^{-1} \psi \right\| e^{-rac{m}{20}h_l(\lambda) \|x\|}$  for all  $x \in \mathbb{R}^d$ .

Siven  $\lambda \in I$  and  $\psi \in \chi_{\{\lambda\}}(H_{\omega})$ , for all  $x, y \in \mathbb{Z}^d$  we have

$$\begin{split} |\psi(x)| |\psi(y)| &\leq C_{m,\omega,\nu} \left(h_l(\lambda)\right)^{-\nu} \left\| T_0^{-1} \psi \right\|^2 \langle x \rangle^{2\nu} \times \\ &e^{2\nu m h_l(\lambda) \left(2d \log\langle x \rangle\right)^{\frac{1}{\xi}}} e^{-\frac{m}{20} h_l(\lambda) \|y-x\|}. \end{split}$$

Let  $H_{\omega}$  be an Anderson model, and set  $E_0 = \inf \Sigma = -2d + \inf \operatorname{supp} \mu$ , the bottom of the almost sure spectrum of  $H_{\omega}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let  $H_{\omega}$  be an Anderson model, and set  $E_0 = \inf \Sigma = -2d + \inf \operatorname{supp} \mu$ , the bottom of the almost sure spectrum of  $H_{\omega}$ . We consider intervals at the bottom of the spectrum, more precisely, intervals of the form  $J = [E_0, E_0 + A)$  with A > 0.

- (日) - (日) - (日) - 日

Let  $H_{\omega}$  be an Anderson model, and set  $E_0 = \inf \Sigma = -2d + \inf \operatorname{supp} \mu$ , the bottom of the almost sure spectrum of  $H_{\omega}$ . We consider intervals at the bottom of the spectrum, more precisely, intervals of the form  $J = [E_0, E_0 + A)$  with A > 0. We set  $\tilde{J} = (E_0 - A, E_0 + A)$ , so  $J \cap \Sigma = \tilde{J} \cap \Sigma$ , and call a box (m, J)-localizing if it is  $(m, \tilde{J})$ -localizing.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let  $H_{\omega}$  be an Anderson model, and set  $E_0 = \inf \Sigma = -2d + \inf \operatorname{supp} \mu$ , the bottom of the almost sure spectrum of  $H_{\omega}$ . We consider intervals at the bottom of the spectrum, more precisely, intervals of the form  $J = [E_0, E_0 + A)$  with A > 0. We set  $\tilde{J} = (E_0 - A, E_0 + A)$ , so  $J \cap \Sigma = \tilde{J} \cap \Sigma$ , and call a box (m, J)-localizing if it is  $(m, \tilde{J})$ -localizing.

The following proposition follows from a Lifshitz tails estimate.

(4月) (4日) (4日) 日

Let  $H_{\omega}$  be an Anderson model, and set  $E_0 = \inf \Sigma = -2d + \inf \operatorname{supp} \mu$ , the bottom of the almost sure spectrum of  $H_{\omega}$ . We consider intervals at the bottom of the spectrum, more precisely, intervals of the form  $J = [E_0, E_0 + A)$  with A > 0. We set  $\tilde{J} = (E_0 - A, E_0 + A)$ , so  $J \cap \Sigma = \tilde{J} \cap \Sigma$ , and call a box (m, J)-localizing if it is  $(m, \tilde{J})$ -localizing. The following proposition follows from a Lifshitz tails estimate.

### Proposition

There exists a constant  $C_{d,\mu} > 0$  such that, given  $\zeta \in (0,1)$ , for sufficiently large L we have

$$\inf_{x\in\mathbb{R}^d}\mathbb{P}\left\{H_{\Lambda_L(x)}>E_0+C_{d,\mu}L^{-\frac{2\zeta}{d}}\right\}\geq 1-e^{-L^{\zeta}}.$$

Let  $H_{\omega}$  be an Anderson model, and set  $E_0 = \inf \Sigma = -2d + \inf \operatorname{supp} \mu$ , the bottom of the almost sure spectrum of  $H_{\omega}$ . We consider intervals at the bottom of the spectrum, more precisely, intervals of the form  $J = [E_0, E_0 + A)$  with A > 0. We set  $\tilde{J} = (E_0 - A, E_0 + A)$ , so  $J \cap \Sigma = \tilde{J} \cap \Sigma$ , and call a box (m, J)-localizing if it is  $(m, \tilde{J})$ -localizing. The following proposition follows from a Lifshitz tails estimate.

### Proposition

There exists a constant  $C_{d,\mu} > 0$  such that, given  $\zeta \in (0,1)$ , for sufficiently large L we have

$$\inf_{x\in\mathbb{R}^d}\mathbb{P}\left\{H_{\Lambda_L(x)}>E_0+C_{d,\mu}L^{-\frac{2\zeta}{d}}\right\}\geq 1-e^{-L^{\zeta}}.$$

In particular, for all intervals  $J_{\zeta}(L) = [E_0, E_0 + C_{d,\mu}L^{-\frac{2\zeta}{d}})$  and all m > 0,

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\left\{\Lambda_L(x) \text{ is } (m, J_{\zeta}(L)) \text{-localizing for } H_{\omega}\right\} \geq 1 - e^{-L^{\zeta}}$$

We combine the Proposition with the Theorem, taking  $I_0 = J_{\zeta}(L_0)$ , i.e.,

$$E = E_0$$
 and  $A_0 = C_{d,\mu} L_0^{-\frac{2\zeta}{d}}$ ,  $m_0 = \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}}$ ,  $m_- = \frac{1}{9d} C_{d,\mu}$ ,  $\kappa' = \frac{2\zeta}{d}$ .

イロト イ団ト イヨト イヨト

æ

We combine the Proposition with the Theorem, taking  $I_0 = J_{\zeta}(L_0)$ , i.e.,

$$E = E_0 \text{ and } A_0 = C_{d,\mu} L_0^{-\frac{2\zeta}{d}}, \ m_0 = \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}}, \ m_- = \frac{1}{9d} C_{d,\mu}, \ \kappa' = \frac{2\zeta}{d}.$$
  
We require  $\frac{2\zeta}{d} < \tau - \gamma \beta$ , and then choose  $0 < \kappa < \tau - \gamma \beta - \kappa'$ .

$$\begin{split} E &= E_0 \text{ and } A_0 = C_{d,\mu} L_0^{-\frac{2\zeta}{d}}, \ m_0 = \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}}, \ m_- = \frac{1}{9d} C_{d,\mu}, \ \kappa' = \frac{2\zeta}{d}. \end{split}$$
We require  $\frac{2\zeta}{d} < \tau - \gamma \beta$ , and then choose  $0 < \kappa < \tau - \gamma \beta - \kappa'$ . We find that can choose the exponents as desired as long as  $\zeta < \frac{d}{d+2}. \end{split}$ 

$$\begin{split} E &= E_0 \text{ and } A_0 = C_{d,\mu} L_0^{-\frac{2\zeta}{d}}, \ m_0 = \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}}, \ m_- = \frac{1}{9d} C_{d,\mu}, \ \kappa' = \frac{2\zeta}{d}. \end{split}$$
We require  $\frac{2\zeta}{d} < \tau - \gamma \beta$ , and then choose  $0 < \kappa < \tau - \gamma \beta - \kappa'$ . We find that can choose the exponents as desired as long as  $\zeta < \frac{d}{d+2}. \end{split}$ 

### Theorem

Let  $H_{\omega}$  be an Anderson model, and fix  $0 < \xi < \zeta < \frac{d}{d+2}$ .

 $E = E_0$  and  $A_0 = C_{d,\mu}L_0^{-\frac{2\zeta}{d}}$ ,  $m_0 = \frac{1}{9d}C_{d,\mu}L^{-\frac{2\zeta}{d}}$ ,  $m_- = \frac{1}{9d}C_{d,\mu}$ ,  $\kappa' = \frac{2\zeta}{d}$ . We require  $\frac{2\zeta}{d} < \tau - \gamma\beta$ , and then choose  $0 < \kappa < \tau - \gamma\beta - \kappa'$ . We find that can choose the exponents as desired as long as  $\zeta < \frac{d}{d+2}$ .

#### Theorem

Let  $H_{\omega}$  be an Anderson model, and fix  $0 < \xi < \zeta < \frac{d}{d+2}$ . Then there exists  $\gamma > 1$  such that, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  we have  $\inf_{x \in \mathbb{R}^d} \mathbb{P}\left\{\Lambda_L(x) \text{ is } (m_{\zeta,\infty}, J_{\zeta,\infty}, J_{\zeta,\infty}^{L^{\frac{1}{\gamma}}}) \text{-localizing for } H_{\omega}\right\} \ge 1 - e^{-L^{\xi}},$ 

 $E = E_0$  and  $A_0 = C_{d,\mu}L_0^{-\frac{2\zeta}{d}}$ ,  $m_0 = \frac{1}{9d}C_{d,\mu}L^{-\frac{2\zeta}{d}}$ ,  $m_- = \frac{1}{9d}C_{d,\mu}$ ,  $\kappa' = \frac{2\zeta}{d}$ . We require  $\frac{2\zeta}{d} < \tau - \gamma\beta$ , and then choose  $0 < \kappa < \tau - \gamma\beta - \kappa'$ . We find that can choose the exponents as desired as long as  $\zeta < \frac{d}{d+2}$ .

#### Theorem

Let  $H_{\omega}$  be an Anderson model, and fix  $0 < \xi < \zeta < \frac{d}{d+2}$ . Then there exists  $\gamma > 1$  such that, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  we have  $\inf_{x \in \mathbb{R}^d} \mathbb{P}\left\{\Lambda_L(x) \text{ is } (m_{\zeta,\infty}, J_{\zeta,\infty}, J_{\zeta,\infty}^{L^{\frac{1}{\gamma}}}) \text{-localizing for } H_{\omega}\right\} \ge 1 - e^{-L^{\xi}},$ where

$$\begin{aligned} A_{\zeta,\infty} &= C_{d,\mu} L_0^{-\frac{2\zeta}{d}} \prod_{k=0}^{\infty} \left( 1 - L_0^{-\kappa\gamma^k} \right) \ge \frac{1}{2} C_{d,\mu} L_0^{-\frac{2\zeta}{d}}, \quad J_{\zeta,\infty} = [E_0, E_0 + A_{\zeta,\infty}), \\ m_{\zeta,\infty} &= \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}} \prod_{k=0}^{\infty} \left( 1 - C_{d,\frac{1}{9d}C_{d,\mu}} L_0^{-\rho\gamma^k} \right) \ge \frac{1}{18d} C_{d,\mu} L^{-\frac{2\zeta}{d}}. \end{aligned}$$

 $E = E_0$  and  $A_0 = C_{d,\mu}L_0^{-\frac{2\zeta}{d}}$ ,  $m_0 = \frac{1}{9d}C_{d,\mu}L^{-\frac{2\zeta}{d}}$ ,  $m_- = \frac{1}{9d}C_{d,\mu}$ ,  $\kappa' = \frac{2\zeta}{d}$ . We require  $\frac{2\zeta}{d} < \tau - \gamma\beta$ , and then choose  $0 < \kappa < \tau - \gamma\beta - \kappa'$ . We find that can choose the exponents as desired as long as  $\zeta < \frac{d}{d+2}$ .

### Theorem

Let  $H_{\omega}$  be an Anderson model, and fix  $0 < \xi < \zeta < \frac{d}{d+2}$ . Then there exists  $\gamma > 1$  such that, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  we have  $\inf_{x \in \mathbb{R}^d} \mathbb{P}\left\{\Lambda_L(x) \text{ is } (m_{\zeta,\infty}, J_{\zeta,\infty}, J_{\zeta,\infty}^{L^{\frac{1}{\gamma}}}) \text{-localizing for } H_{\omega}\right\} \ge 1 - e^{-L^{\xi}},$ 

where

$$\begin{split} A_{\zeta,\infty} &= C_{d,\mu} L_0^{-\frac{2\zeta}{d}} \prod_{k=0}^{\infty} \left( 1 - L_0^{-\kappa\gamma^k} \right) \geq \frac{1}{2} C_{d,\mu} L_0^{-\frac{2\zeta}{d}}, \quad J_{\zeta,\infty} = [E_0, E_0 + A_{\zeta,\infty}), \\ m_{\zeta,\infty} &= \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}} \prod_{k=0}^{\infty} \left( 1 - C_{d,\frac{1}{9d}C_{d,\mu}} L_0^{-\rho\gamma^k} \right) \geq \frac{1}{18d} C_{d,\mu} L^{-\frac{2\zeta}{d}}. \end{split}$$

The conclusions of the Theorem and the Corollary hold in the interval

 $E = E_0$  and  $A_0 = C_{d,\mu}L_0^{-\frac{2\zeta}{d}}$ ,  $m_0 = \frac{1}{9d}C_{d,\mu}L^{-\frac{2\zeta}{d}}$ ,  $m_- = \frac{1}{9d}C_{d,\mu}$ ,  $\kappa' = \frac{2\zeta}{d}$ . We require  $\frac{2\zeta}{d} < \tau - \gamma\beta$ , and then choose  $0 < \kappa < \tau - \gamma\beta - \kappa'$ . We find that can choose the exponents as desired as long as  $\zeta < \frac{d}{d+2}$ .

### Theorem

Let  $H_{\omega}$  be an Anderson model, and fix  $0 < \xi < \zeta < \frac{d}{d+2}$ . Then there exists  $\gamma > 1$  such that, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  we have  $\inf_{x \in \mathbb{R}^d} \mathbb{P}\left\{ \Lambda_L(x) \text{ is } (m_{\zeta,\infty}, J_{\zeta,\infty}, J_{\zeta,\infty}^{L^{\frac{1}{\gamma}}}) \text{-localizing for } H_{\omega} \right\} \ge 1 - e^{-L^{\xi}},$ 

where

$$\begin{split} A_{\zeta,\infty} &= C_{d,\mu} L_0^{-\frac{2\zeta}{d}} \prod_{k=0}^{\infty} \left( 1 - L_0^{-\kappa\gamma^k} \right) \ge \frac{1}{2} C_{d,\mu} L_0^{-\frac{2\zeta}{d}}, \quad J_{\zeta,\infty} = [E_0, E_0 + A_{\zeta,\infty}), \\ m_{\zeta,\infty} &= \frac{1}{9d} C_{d,\mu} L^{-\frac{2\zeta}{d}} \prod_{k=0}^{\infty} \left( 1 - C_{d,\frac{1}{9d}C_{d,\mu}} L_0^{-\rho\gamma^k} \right) \ge \frac{1}{18d} C_{d,\mu} L^{-\frac{2\zeta}{d}}. \end{split}$$

The conclusions of the Theorem and the Corollary hold in the interval  $J_{\zeta,\infty}$ . Note  $\lim_{L_0\to\infty} A_{\zeta,\infty}L_0^{\frac{2\zeta}{d}} = C_{d,\mu}$  and  $\lim_{L_0\to\infty} m_{\zeta,\infty}L^{\frac{2\zeta}{d}} = \frac{C_{d,\mu}}{9d}$ .

We may also use disorder to start the eigensystem multiscale analysis in a fixed interval at the bottom of the the spectrum.

・ 同 ト ・ ヨ ト ・ ヨ ト

We may also use disorder to start the eigensystem multiscale analysis in a fixed interval at the bottom of the the spectrum.

Let  $H_{g,\omega} = -\Delta + gV_{\omega}$ , where g > 0, and assume  $\{0\} \in \operatorname{supp} \mu \subset [0,\infty)$ , so  $E_0 = \inf \Sigma = -2d$ .

・ 同 ト ・ ヨ ト ・ ヨ ト
## Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a fixed interval at the bottom of the the spectrum.

Let  $H_{g,\omega} = -\Delta + gV_{\omega}$ , where g > 0, and assume  $\{0\} \in \operatorname{supp} \mu \subset [0,\infty)$ , so  $E_0 = \inf \Sigma = -2d$ . Then, given B > 0 and  $\zeta \in (0,1)$ , there exists  $g_{\zeta}(L)$  such that for all  $g \ge g_{\zeta}(L)$  we have

 $\inf_{x\in\mathbb{R}^d}\mathbb{P}\left\{H_{g,\Lambda_L(x)}\geq -2d+B\right\}\geq 1-(L+1)^d K(g^{-1}B)^\alpha\geq 1-L^{-\zeta}.$ 

## Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a fixed interval at the bottom of the the spectrum.

Let  $H_{g,\omega} = -\Delta + gV_{\omega}$ , where g > 0, and assume  $\{0\} \in \operatorname{supp} \mu \subset [0,\infty)$ , so  $E_0 = \inf \Sigma = -2d$ . Then, given B > 0 and  $\zeta \in (0,1)$ , there exists  $g_{\zeta}(L)$  such that for all  $g \ge g_{\zeta}(L)$  we have

$$\inf_{x\in\mathbb{R}^d}\mathbb{P}\left\{H_{g,\Lambda_L(x)}\geq -2d+B\right\}\geq 1-(L+1)^d K(g^{-1}B)^{\alpha}\geq 1-L^{-\zeta}.$$

It follows that, given  $\zeta \in (0,1)$ , for  $g \geq g_{\zeta}(L)$  and all m > 0 we have

 $\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_L(x) \text{ is } (m, [-2d, -2d+B)) \text{-localizing for } H_{g,\omega}\} \geq 1 - e^{-L^{\zeta}}.$ 

◆ロ → ◆ 母 → ◆ 臣 → ◆ 臣 → 今 へ @

Let  $H_{g,\omega}$  be an Anderson model with disorder as above, and choose appropriate exponents.

Let  $H_{g,\omega}$  be an Anderson model with disorder as above, and choose appropriate exponents. Given B > 0, let J(B) = [-2d, -2d + B) and pick  $0 < m \le \frac{1}{2} \log(1 + \frac{B}{4d})$ .

Let  $H_{g,\omega}$  be an Anderson model with disorder as above, and choose appropriate exponents. Given B > 0, let J(B) = [-2d, -2d + B) and pick  $0 < m \le \frac{1}{2}\log(1 + \frac{B}{4d})$ . Then, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  and  $g \ge g_{\zeta}(L_0)$  we have

$$\inf_{x\in\mathbb{R}^d}\mathbb{P}\left\{\Lambda_L(x) \text{ is } (m_{\infty},J_{\infty}(B),(J_{\infty}(B))^{L^{\frac{1}{\gamma}}})\text{-localizing for } H_{g,\omega}\right\}\geq 1-\mathrm{e}^{-L^{\xi}},$$

Let  $H_{g,\omega}$  be an Anderson model with disorder as above, and choose appropriate exponents. Given B > 0, let J(B) = [-2d, -2d + B) and pick  $0 < m \le \frac{1}{2}\log(1 + \frac{B}{4d})$ . Then, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  and  $g \ge g_{\zeta}(L_0)$  we have

$$\inf_{x\in\mathbb{R}^d}\mathbb{P}\left\{\Lambda_L(x) \text{ is } (m_{\infty},J_{\infty}(B),(J_{\infty}(B))^{L^{\frac{1}{\gamma}}})\text{-localizing for } H_{g,\omega}\right\}\geq 1-\mathrm{e}^{-L^{\xi}},$$

where

$$A_{\infty} = A_{\infty}(L_0) = B \prod_{k=0}^{\infty} \left( 1 - L_0^{-\kappa \gamma^k} \right), \quad J_{\infty} = J_{\infty}(L_0) = [-2d, -2d + A_{\infty}),$$
$$m_{\infty} = m_{\infty}(L_0) = m \prod_{k=0}^{\infty} \left( 1 - C_{d,m_-} L_0^{-\rho \gamma^k} \right).$$

Let  $H_{g,\omega}$  be an Anderson model with disorder as above, and choose appropriate exponents. Given B > 0, let J(B) = [-2d, -2d + B) and pick  $0 < m \le \frac{1}{2}\log(1 + \frac{B}{4d})$ . Then, if  $L_0$  is sufficiently large, for all  $L \ge L_0^{\gamma}$  and  $g \ge g_{\zeta}(L_0)$  we have

$$\inf_{x\in\mathbb{R}^d} \mathbb{P}\left\{ \Lambda_L(x) \text{ is } (m_{\infty}, J_{\infty}(B), (J_{\infty}(B))^{L^{\frac{1}{\gamma}}}) \text{-localizing for } H_{g,\omega} \right\} \geq 1 - e^{-L^{\xi}},$$

where

$$\begin{aligned} A_{\infty} &= A_{\infty}(L_{0}) = B \prod_{k=0}^{\infty} \left( 1 - L_{0}^{-\kappa \gamma^{k}} \right), \quad J_{\infty} = J_{\infty}(L_{0}) = [-2d, -2d + A_{\infty}), \\ m_{\infty} &= m_{\infty}(L_{0}) = m \prod_{k=0}^{\infty} \left( 1 - C_{d,m_{-}} L_{0}^{-\rho \gamma^{k}} \right). \end{aligned}$$

In particular, the conclusions of the Theorem and Corollary hold in the interval  $J_{\infty}$ . Moreover,  $\lim_{L_0 \to \infty} A_{\infty}(L_0) = B$  and  $\lim_{L_0 \to \infty} m_{\infty}(L_0) = m$ .

# Decay of Green's functions in (m, I)-localizing boxes

#### Lemma

Fix  $m_- > 0$ . Let I = (E - A, E + A), with  $E \in \mathbb{R}$  and A > 0, and m > 0. Suppose that  $\Lambda_L$  is (m, I)-localizing for H, where

 $m_-L^{-\kappa'} \leq m \leq \frac{1}{2}\log\left(1+\frac{A}{4d}\right).$ 

# Decay of Green's functions in (m, I)-localizing boxes

#### Lemma

Fix  $m_- > 0$ . Let I = (E - A, E + A), with  $E \in \mathbb{R}$  and A > 0, and m > 0. Suppose that  $\Lambda_L$  is (m, I)-localizing for H, where

$$m_-L^{-\kappa'} \leq m \leq \frac{1}{2}\log\left(1+\frac{A}{4d}\right)$$

Let  $\lambda \in I_L$  with dist  $\{\lambda, \sigma(H_{\Lambda_L})\} \ge e^{-L^{\beta}}$ .

# Decay of Green's functions in (m, I)-localizing boxes

#### Lemma

Fix  $m_- > 0$ . Let I = (E - A, E + A), with  $E \in \mathbb{R}$  and A > 0, and m > 0. Suppose that  $\Lambda_L$  is (m, I)-localizing for H, where

$$m_-L^{-\kappa'} \leq m \leq \frac{1}{2}\log\left(1+\frac{A}{4d}\right).$$

Let  $\lambda \in I_L$  with dist  $\{\lambda, \sigma(H_{\Lambda_L})\} \ge e^{-L^{\beta}}$ .

Then, letting  $G_{\Lambda_L}(\lambda) = (H_{\Lambda_L} - \lambda)^{-1}$ , we have

 $|G_{\Lambda_L}(\lambda; x, y)| \le e^{-m'' h_l(\lambda) ||x-y||} \quad \text{for all} \quad x, y \in \Lambda_L \text{ with } ||x-y|| \ge \frac{L}{100},$ 

where

$$m'' \ge m \left(1 - C_{d,m_-} L^{-(1-\tau)}\right).$$

Let  $\Lambda_L$  be (m, I)-localizing for H, and let  $\{(\varphi_v, v)\}_{v \in \sigma(H_{\Lambda_L})}$  be an (m, I)-localized eigensystem for  $H_{\Lambda_L}$ .



Let  $\Lambda_L$  be (m, I)-localizing for H, and let  $\{(\varphi_V, V)\}_{V \in \sigma(H_{\Lambda_L})}$  be an (m, I)-localized eigensystem for  $H_{\Lambda_L}$ . Let  $x, y \in \Lambda_L$  with  $||x - y|| \ge \frac{L}{100}$ . Given  $v \in \sigma_I(H_{\Lambda_L})$ , since either  $||x - x_v|| \ge L^{\tau}$  or  $||y - x_v|| \ge L^{\tau}$ , we have

 $|\varphi_{v}(x)\varphi_{v}(y)| \leq e^{-m'h_{l}(v)||x-y||}, \quad \text{where} \quad m' \geq m(1-100L^{\tau-1}).$ 

Let  $\Lambda_L$  be (m, I)-localizing for H, and let  $\{(\varphi_V, V)\}_{V \in \sigma(H_{\Lambda_L})}$  be an (m, I)-localized eigensystem for  $H_{\Lambda_L}$ . Let  $x, y \in \Lambda_L$  with  $||x - y|| \ge \frac{L}{100}$ . Given  $v \in \sigma_I(H_{\Lambda_L})$ , since either  $||x - x_v|| \ge L^{\tau}$  or  $||y - x_v|| \ge L^{\tau}$ , we have

 $|\varphi_{v}(x)\varphi_{v}(y)| \leq e^{-m'h_{l}(v)\|x-y\|}, \quad \text{where} \quad m' \geq m(1-100L^{\tau-1}).$ 

$$G_{\Lambda_L}(\lambda; x, y) = \sum_{\nu \in \sigma_I(H_{\Lambda_\ell})} (\nu - \lambda)^{-1} \overline{\varphi_{\nu}(x)} \varphi_{\nu}(y) + \sum_{\nu \in \sigma_{\mathbb{R} \setminus I}(H_{\Lambda_\ell})} (\nu - \lambda)^{-1} \overline{\varphi_{\nu}(x)} \varphi_{\nu}(y).$$

Let  $\Lambda_L$  be (m, I)-localizing for H, and let  $\{(\varphi_V, V)\}_{V \in \sigma(H_{\Lambda_L})}$  be an (m, I)-localized eigensystem for  $H_{\Lambda_L}$ . Let  $x, y \in \Lambda_L$  with  $||x - y|| \ge \frac{L}{100}$ . Given  $v \in \sigma_I(H_{\Lambda_L})$ , since either  $||x - x_v|| \ge L^{\tau}$  or  $||y - x_v|| \ge L^{\tau}$ , we have

 $|\varphi_{v}(x)\varphi_{v}(y)| \leq e^{-m'h_{l}(v)||x-y||}, \quad \text{where} \quad m' \geq m(1-100L^{\tau-1}).$ 

$$G_{\Lambda_L}(\lambda;x,y) = \sum_{\nu \in \sigma_l(H_{\Lambda_\ell})} (\nu - \lambda)^{-1} \overline{\varphi_{\nu}(x)} \varphi_{\nu}(y) + \sum_{\nu \in \sigma_{\mathbb{R} \setminus l}(H_{\Lambda_\ell})} (\nu - \lambda)^{-1} \overline{\varphi_{\nu}(x)} \varphi_{\nu}(y).$$

We know

$$\left|\sum_{\nu\in\sigma_{I}(H_{\Lambda_{\ell}})}(\nu-\lambda)^{-1}\overline{\varphi_{\nu}(x)}\varphi_{\nu}(y)\right|\leq e^{L^{\beta}}\sum_{\nu\in\sigma_{I}(H_{\Lambda_{\ell}})}e^{-m'h_{I}(\nu)\|x-y\|}.$$

- ( 同 ) ( 回 ) ( 回 ) - 回

Т

Let  $\Lambda_L$  be (m, I)-localizing for H, and let  $\{(\varphi_v, v)\}_{v \in \sigma(H_{\Lambda_L})}$  be an (m, l)-localized eigensystem for  $H_{\Lambda_L}$ . Let  $x, y \in \Lambda_L$  with  $||x - y|| \ge \frac{L}{100}$ . Given  $v \in \sigma_l(H_{\Lambda_L})$ , since either  $||x - x_v|| \ge L^{\tau}$  or  $||y - x_v|| \ge L^{\tau}$ , we have

 $|\varphi_{V}(x)\varphi_{V}(y)| \leq e^{-m'h_{l}(v)||x-y||}, \text{ where } m' \geq m(1-100L^{\tau-1}).$ 

$$G_{\Lambda_L}(\lambda;x,y) = \sum_{\nu \in \sigma_l(H_{\Lambda_\ell})} (\nu - \lambda)^{-1} \overline{\varphi_{\nu}(x)} \varphi_{\nu}(y) + \sum_{\nu \in \sigma_{\mathbb{R} \setminus l}(H_{\Lambda_\ell})} (\nu - \lambda)^{-1} \overline{\varphi_{\nu}(x)} \varphi_{\nu}(y).$$

We know

$$\left|\sum_{\nu\in\sigma_{I}(\mathcal{H}_{\Lambda_{\ell}})}(\nu-\lambda)^{-1}\overline{\varphi_{\nu}(x)}\varphi_{\nu}(y)\right|\leq e^{L^{\beta}}\sum_{\nu\in\sigma_{I}(\mathcal{H}_{\Lambda_{\ell}})}e^{-m'h_{I}(\nu)\|x-y\|}.$$

 $\sum_{\nu \in \sigma_{\mathbb{R} \setminus I}(H_{\Lambda_{\ell}})} (\nu - \lambda)^{-1} \varphi_{\nu}(x) \varphi_{\nu}(y)$  ? How can we estimate We have no information on  $\varphi_v$  for  $v \notin I$ . Where does the decay comes from?