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» If © C Z9, we let Hg be the restriction of Xg HX g to £2(9).
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» H will always denote a discrete Schrodinger operator, that is, an
operator H = —A+ V on (?(Z9), where where A is the (centered)
discrete Laplacian: (A@)(x) =Y, x-1¢(y) for @ e *(Z%).
» If © C Z9, we let Hg be the restriction of Xg HX g to £2(9).

» Given ® C © C Z9, we consider (2(®) C £2(©) by extending functions
on & to functions on © that are identically 0 on ©\ ¢.

> ||x|]| =maxj=12,  q4|xj| and |x]= 27:1)9-2 for x € RY.

» We consider Z9 € R? and use boxes in Z9 centered at points in RY:
AL(x) =AF(x)NZ9, where x e RY and Af(x) = {y eRY; |ly —x| < é}
Note that  (L—2)? < |A(x)| < (L+1)?  for L>2.
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Exponents

We fix  &£,0,B,7€(0,1) and 7y>1 such that
1 ¢ (r-1)p+1
O<§<C<[3<y<1<}/<\/;and max{yﬁ, ; }<’L’<1,

take E:C;Be(c,ﬁ) and %:%e(m).

In addition we fix k€ (0,1) and k' €[0,1) such that

K+Kk <1—78B,
set p:min{lc,%,yr—(y—l)z—l}e[K,l),
and pick s (0,1—p].
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Eigenpairs and eigensystems
Let H=—-A+V on (*(Z9) and © C 7Z9.

e We call (¢,1) an eigenpair for Hg if 4 is an eigenvalue for Hg and ¢
is a corresponding normalized eigenfunction, that is,

Hop =A@, where A€R and ¢ € ?(©) with || =1.

o A collection {(¢;,4;)},., of eigenpairs for He will be called an
eigensystem for He if {¢;},_, is an orthonormal basis for 72(0).

o If © is finite and all eigenvalues of Hg are simple, we can rewrite an
eigensystem as {(‘P/lal)}/lec(H@)-

Abel Klein



Basic definitions

Level spacing boxes and localized eigenfunctions

Definition
Given L >0, a finite set © C Z9 will be called L-level spacing for H if all
eigenvalues of Hg are simple, and

A=A > forall 4,1 €o(Ho), A #A.

Abel Klein



Basic definitions

Level spacing boxes and localized eigenfunctions

Definition

Given L >0, a finite set © C Z9 will be called L-level spacing for H if all
eigenvalues of Hg are simple, and

A=A > forall 4,1 €o(Ho), A #A.

A box Ay will be called level spacing for H if it is L-level spacing for H.

v

Abel Klein



Basic definitions

Level spacing boxes and localized eigenfunctions

Definition
Given L >0, a finite set © C Z9 will be called L-level spacing for H if all
eigenvalues of Hg are simple, and

A=A > forall 4,1 €o(Ho), A #A.

A box Ay will be called level spacing for H if it is L-level spacing for H.

Definition

Let A, be a box, x € A, and m>0. Then ¢ € (?(A;) is said to be
(x, m)-localized if ||@| =1 and

o) <e ™l forall yen, with |ly—x|> L.

v
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Localizing boxes in energy intervals
Definition

Let J=(E—B,E+B)CIl=(E—AE+A), where E€R and 0 < B <A,
and let m > 0.
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Basic definitions

Localizing boxes in energy intervals

Definition
Let J=(E—B,E+B)CIl=(E—AE+A), where E€R and 0 < B <A,
and let m> 0. A box A, will be called (m, J, [)-localizing for H if
Q@ A, is level spacing for H.
@ There exists an (m, J, /)-localized eigensystem for Hy,: an
eigensystem {((pv,v)}vec(HAL) for Hp, such that for all v € 6(Hp,)

the eigenfunction ¢y is (xy,mx(v)h;(v))-localized for some x, € A,
where the modulating function h; is defined by

1-s% if s€0,1)

hi(t) =h(5E) for teR, where h(s)=
/(1) (A> v () {0 otherwise

Ap is (m,I)-localizing for H if Ay is (m,],/)-localizing for H.

Note that Xs(V)hi(v)) >0 <= ved.
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The Anderson model
The Anderson model is the random Schrédinger operator
Hy:=—A+V, on (327, where

@ A is the (centered) discrete Laplacian:
(Bp)x)= Y o) for @e}(Z).

y€Z4; |y—x|=1

Q@ V,(x) = o, for x € Z9, where @ = { @y}, .y are i.i.d.r.v.'s with a
non-degenerate probability distribution g with bounded support.
We assume 1t is Hélder continuous of order « € (3,1]:

Su(t) < Kt* forall tel0,1],
where K is a constant and Sy (t) := sup,cg 1 {[a,a+t]}.

Remark: o(Hp) =% :=[—2d,2d]+suppu with probability one.
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Anderson model

Probability estimate for level spacing

The eigensystem MSA does not use a Wegner estimate; it uses instead a
probability estimate for level spacing sets derived from Minami's estimate.

Lemma (Klein-Molchanov)
Let H, be an Anderson model, ©® C 79, and L > 1. Then,
P{0 is L-level spacing for Hy} >1— Y, |©|? e (a-1L?

In the special case of a box \;, we have

P{A, is level spacing for Hp} > 1— Yy (L+1)* e~

Abel Klein




Some notation

Let /| =(E—AE+A)with E€Rand A>0, and L> 1.

Abel Klein



Some notation

Let /| =(E—AE+A)with E€Rand A>0, and L >1. We set
IL=(E-A(1-L"),E+AQ1-L")),

Ih=(E-AQ-L ")y LE+AQ-L ).

Abel Klein



Some notation

Let | =(E—AE+A)with E€Rand A>0, and L > 1. We set
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Some notation

Let | =(E—AE+A)with E€Rand A>0, and L > 1. We set
IL=(E-A(1-L"),E+AQ1-L")),
Ih=(E-AQ-L ")y LE+AQ-L ).

Given m >0, C >0, we set

A= Ad( Aﬁ(1—L*"7k),

k=0
lo = LA, L) = (E — Aw(A, L), E + Ax(A, L)),

oo

Mo = m(m, L, C)=m]] (1— CL_p7k> .

k=0
Note that

Llim Ax(A,L)=A and I|m Me(m, L, C) =m.
—>00

4)00
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Let Hy, be an Anderson model. Given m_ > 0, there exists a a finite scale

2 =%(d,m_) and a constant Cy ,, >0 with the following property:
Suppose for some scale Ly > . we have

inf P{A,(x) is (mo, lo)-localizing for Hy} > 1 —e*Lg,

x€ERd
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Let Hy, be an Anderson model. Given m_ > 0, there exists a a finite scale

2 =%(d,m_) and a constant Cy ,, >0 with the following property:
Suppose for some scale Ly > . we have

indeP’{/\LO (x) is (mo, lo)-localizing for Hy} > 1 —e*Lg,
x€R
where Iy = (E — Ag, E+ Ag) C R, with E € R and Ay > 0, and
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Eigensystem multiscale analysis in an energy interval

Theorem
Let Hy, be an Anderson model. Given m_ > 0, there exists a a finite scale

2 =%(d,m_) and a constant Cy ,, >0 with the following property:
Suppose for some scale Ly > . we have

indeP’{/\LO (x) is (mo, lo)-localizing for H,} > 1 — e*Lg,
x€R

where Iy = (E — Ag, E+ Ag) C R, with E € R and Ay > 0, and
m_La"J <mg < %Iog(l—i—f—g).

Let A = Am(Ao, Lo), |o = /oo(Ao, Lo), and m., = moo(mOa LOa Cd,m_)-
Then for all L > Lg we have

)
xE€R4

1
inf ]P’{/\L(x) is (Mo, oy IL7)-localizing for Ha,} >1-e
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Comments

@ Theorem previously proved in the high disorder case, where [y = R.

@ Theorem extended by Klein and Tsang to a bootstrap multiscale
analysis.

@ This theorem implies all the usual forms of localization in the energy
interval /.

@ The usual forms of localization in an energy interval are commonly
proved by either a Green's function multiscale analysis or the
fractional moment method.
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Localization on the energy interval

We fix v > %, and let Ty be the operator on ¢?(Z9) given by

multiplication by the function To(x) := (x)", where (x) = /1 +||x|]*.

Corollary

Suppose the conclusions of the theorem hold for an Anderson model Hy,.
Then the following holds with probability one (I = l., m = ms):

@ Hy, has pure point spectrum in the interval I.

@ If y, is an eigenfunction of H, with eigenvalue A € |, then y; is
exponentially localized with rate of decay 55hi(1), more precisely,

Wi (x)| < Con || To My e BM M forall x e RY.
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Localization on the energy interval

We fix v > %, and let Ty be the operator on ¢?(Z9) given by

multiplication by the function To(x) := (x)", where (x) = /1 +||x|]*.

Corollary

Suppose the conclusions of the theorem hold for an Anderson model Hy,.
Then the following holds with probability one (I = l., m = ms):

@ Hy, has pure point spectrum in the interval I.

@ If y, is an eigenfunction of H, with eigenvalue A € |, then y; is
exponentially localized with rate of decay 55hi(1), more precisely,

W ()| < Con || To Ly e 2@ for all x e RY.
@ GiveniAel and y e X{;L}(Hw), for all x,y € 7.9 we have

_ _ 2
WY < Crnay (1)) [| Ty ()%
2vmhy(A)(2d10g(x))E o~ B (A)ly ]|
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Initial step at the bottom of the spectrum: fixed disorder

Let Hy be an Anderson model, and set Eg = inf X = —2d + infsuppu, the
bottom of the almost sure spectrum of Hy,.
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Initial step at the bottom of the spectrum: fixed disorder

Let Hy be an Anderson model, and set Eg = inf X = —2d + infsuppu, the
bottom of the almost sure spectrum of H,. We consider intervals at the
bottom of the spectrum, more precisely, intervals of the form
J=[Eo,Eo+A) with A>0. We set J = (Eg — A, Eo + A), so

JNE =JNZ, and call a box (m, J)-localizing if it is (m, J)-localizing.
The following proposition follows from a Lifshitz tails estimate.
Proposition

There exists a constant Cq,, > 0 such that, given { € (0,1), for sufficiently
large L we have

inf IP’{H,\L(X) > B+ cd#r%} >1—e L

xeRd
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Initial step at the bottom of the spectrum: fixed disorder

Let Hy be an Anderson model, and set Eg = inf X = —2d + infsuppu, the
bottom of the almost sure spectrum of H,. We consider intervals at the
bottom of the spectrum, more precisely, intervals of the form

J=[Eo, Eo+ A) with A>0. We set J = (Ey— A, Eg+A), so

JNY =JNX, and call a box (m,J)-localizing if it is (m, J)-localizing.

The following proposition follows from a Lifshitz tails estimate.
Proposition
There exists a constant Cq,, > 0 such that, given { € (0,1), for sufficiently

large L we have

. _x% —1¢
XlgﬂgdP{HAL(X)>EO+Cd’uL d } >1—e .
In particular, for all intervals J;(L) = [Eo, Eo + Cd,uL_§) and all m >0,

inf P{AL(x) is (m, J(L))-localizing for Hy} > 1—e™".
xeR
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Eigensystem multiscale analysis in an energy interval

We combine the Proposition with theTheorem, taking lp = .E(\/) ie.,
_2
E=Eyand Ay = Cd,/.LLo 4, my= gldCd#L*

Lo
2
d
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Eigensystem multiscale analysis in an energy interval
E 2 —~

We combine the Proposition with theTheorem, taking lo = J¢(Lo), i.e.,
26
E=Epand Ag= Caply d, mo= & Capl 5, m =&Cop, &' =%

We require % < T—7YP, and then choose 0 < Kk < T— Y — k.
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We combine the Proposition with theTheorem, taking lo = J¢(Lo), i.e.,

_2¢ 2L
_ _ d _ 1 -2 _ 1 ;2
E=Eyand Ag=Cypuly @, mo=g5Capul 7, m-=g;Cqp, ¥ =

We require % < 7—7YB, and then choose 0 < k¥ < T— 7y — x’. We find
that can choose the exponents as desired as long as { < dLJrz'
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Eigensystem multiscale analysis in an energy interval
b 2 —~

We combine the Proposition with theTheorem, taking Iy = Jg(Lo), ie.,
2

E—Epand A= Cauly @, mo= & Coul=5, m_ = & Copr & =%

=FLoand Ao = Capuly ", Mo = g45Cdu M- =55 du, K =
We require % < 7—7YB, and then choose 0 < k¥ < T— 7y — x’. We find
that can choose the exponents as desired as long as { < dLJrz'

Theorem
Let Hg, be an Anderson model, and fix 0 < & < { < diu'
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—_—
We combine the Proposition with theTheorem, taking Iy = J-(Lo), i.e

—% 1 |-% 1 ;28
E=Eyand Ag=Cypuly @, mo=g5Capul 7, m-=g;Cqp, ¥ =
We require dC < 17— 9P, and then choose 0 < k < T—yB — k. We find
that can choose the exponents as desired as long as { < d—+2.
Theorem
Let Hg, be an Anderson model, and fix 0 < & < { < di+2' Then there
exists Y > 1 such that, if Ly is sufficiently large, for all L > Lg we have

1

inf P{AL(X) is(mcm,JQW,JCL;)—/ocaIizing for Ha,} >1— efL‘i’

xERY
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—_—
We combine the Proposition with theTheorem, taking Iy = J-(Lo), i.e

_ —% _ 1 |-% _ 1 r_ 20
E—anndAo—Cd“ ,mo—WCd7u d, m_ gﬁcduvK—
We require dC < 17— 9P, and then choose 0 < k < T—yB — k. We find

that can choose the exponents as desired as long as { < d—+2.

Theorem
Let Hg, be an Anderson model, and fix 0 < & < { < di+2' Then there

exists Y > 1 such that, if Ly is sufficiently large, for all L > Lg we have

1
inf P {/\L(x) is (Mg o, Jc7w,Jé7L)—/ocalizing for Ha,} >1— efL‘i’

xERd
where
_2g e -%
At =Capuly © H (1_ L(;Kyk) = %Cd»ﬂLO “ Jre=[F0 Bt Ar ),
k=0

alR®
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—_—
We combine the Proposition with theTheorem, taking Iy = J-(Lo), i.e

_ —% _ 1 |-% 1 r_ 28
E—anndAo—Cd“ ,mo—WCd7u d, m_ gjcduvK—j
We require dC < T—7YPB, and then choose 0 < Kk < T—Yp — K We find

that can choose the exponents as desired as long as { < d+2'

Theorem
Let Hg, be an Anderson model, and fix 0 < & < { < di+2' Then there
exists Y > 1 such that, if Ly is sufficiently large, for all L > Lg we have

1
inf P {/\L(x) is (Mg o, JQW,Jé;)—/ocalizing for Ha,} >1— efL‘i,

xERd
where
_2 S
Age = Caply ¢ H (1_ Lawk) 2 %Cd»#LO ‘<, Jgo = [EOvEOJFAC,oo)v
k=0
_1 —2% —pv* 1 -%
Mg oo = 9q Ca L™ kHO (1— Ca. ke, Lo ) > 159 Caul™?

The conclusions of the Theorem and the Corollary hold in the interval

Jg oo




—_—
We combine the Proposition with theTheorem, taking Iy = J-(Lo), i.e

E—Eyand Ag= Cauls @, mo= & Cyul =5 m =2 Cyp k=2
= Lo an 0= du v Mo = g4 d7u d,m_=g45Cdu K =7

We require dC < 17— 9P, and then choose 0 < k < T—yB — k. We find
that can choose the exponents as desired as long as { < d—+2.

Theorem

Let Hg, be an Anderson model, and fix 0 < & < { < di+2' Then there
exists Y > 1 such that, if Ly is sufficiently large, for all L > Lg we have

1
inf P {/\L(x) is (Mg o, JQW,Jé;)—/ocalizing for Ha,} >1— efL‘i,

x€RA
where
_2% = ek _2
Age=Caulo " [T (1-1"") = §Cauly ¥ Jpe=[Eo Eot-Ac.),
k=0

alx

_ 1 e —p¥ 1 _2
Mg o = 5q Cdul ™ kHO (1 —Corcbo” ) 2 189 Canl

The conclusions of the Theorem and the Corollary hold in the interval
2¢

. % . _a
J¢ oo Notelimp oo Ar Ly = Cyy and limpy .. mcmL = ol




Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a
fixed interval at the bottom of the the spectrum.
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Eigensystem multiscale analysis in an energy interval

Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a
fixed interval at the bottom of the the spectrum.

Let Hy o = —A+gV, where g >0, and assume {0} € suppp C [0,00), so
Eo=infX =-2d.
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Eigensystem multiscale analysis in an energy interval

Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a
fixed interval at the bottom of the the spectrum.

Let Hy o = —A+gV, where g >0, and assume {0} € suppp C [0,00), so
Eo=infX =-2d.

Then, given B >0 and ¢ € (0,1), there exists g¢(L) such that for all
g > g¢(L) we have

inf PAH, A (> —2d+BY>1—(L+1)7K(g 'B)*>1—L"¢.
8, L()
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Eigensystem multiscale analysis in an energy interval

Initial step at the bottom of the spectrum: fixed interval

We may also use disorder to start the eigensystem multiscale analysis in a
fixed interval at the bottom of the the spectrum.

Let Hy o = —A+gV, where g >0, and assume {0} € suppp C [0,00), so
Eo=infX =-2d.

Then, given B >0 and ¢ € (0,1), there exists g¢(L) such that for all
g > g¢(L) we have

inf P{Hgp, ()= —2d+B} >1—(L+1)7K(g 'B)* = 1-L°.

xeR

It follows that, given ¢ € (0,1), for g > g¢(L) and all m > 0 we have
inf P{A(x)is (m,[-2d,—2d + B))-localizing for Hg n} > 1 —e L,

x€R4
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Eigensystem multiscale analysis in an energy interval

Theorem

Let Hg » be an Anderson model with disorder as above, and choose
appropriate exponents.
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Eigensystem multiscale analysis in an energy interval

Theorem

Let Hg » be an Anderson model with disorder as above, and choose
appropriate exponents. Given B >0, let J(B) = [—2d,—2d + B) and pick
0<m<ilog(l+2£).
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Eigensystem multiscale analysis in an energy interval

Theorem

Let Hg » be an Anderson model with disorder as above, and choose
appropriate exponents. Given B >0, let J(B) = [—2d,—2d + B) and pick
0<m< Slog(1+ %). Then, if Lo is sufficiently large, for all L > L} and
g > g¢(Lo) we have

1
inf ]P’{/\L(x) i5 (Mo, Joo(B), (Joe(B))-")-localizing for Hg@} >1 —e*Lé,

xE€R4
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Eigensystem multiscale analysis in an energy interval

Theorem

Let Hg » be an Anderson model with disorder as above, and choose
appropriate exponents. Given B >0, let J(B) = [—2d,—2d + B) and pick
0<m< Slog(1+ %). Then, if Lo is sufficiently large, for all L > L} and
g > g¢(Lo) we have

1
inf ]P’{/\L(x) i5 (Mo, Joo(B), (Joe(B))-")-localizing for Hg@} >1 —e*Lé,

xE€R4

where
Aw=Au(Lo)=BT] (1 - Lg"yk) . Jo=Jdu(Lo) =[-2d,—2d +A.),
k=0

oo

Mo = Mw(Lg) = m H (1 —Cd.m_ Lapyk) .
k=0
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Eigensystem multiscale analysis in an energy interval

Theorem

Let Hg » be an Anderson model with disorder as above, and choose
appropriate exponents. Given B >0, let J(B) = [—2d,—2d + B) and pick
0<m< Slog(1+ %). Then, if Lo is sufficiently large, for all L > L} and
g > g¢(Lo) we have

1
inf ]P’{/\L(x) i5 (Mo, Joo(B), (Joo(B))-" )-localizing for Hg@} >1 —e*Lé,

xER4

where
A= Au(Lo)=B]] (1 - Lg”k) , o= Ju(Lo) = [~2d, —2d + A..),
k=0
Mo = Mw(Lg) = m ﬁ (1 —Cd.m_ Lapyk) .
k=0

In particular, the conclusions of the Theorem and Corollary hold in the
interval J... Moreover, limp, . Aw(Lo) = B and limp, . Me(Lg) = m.
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Connection with Green's functions

Decay of Green's functions in (m,/)-localizing boxes

Lemma

Fix m_>0. Let | =(E—A,E+A), with E€ R and A>0, and m > 0.
Suppose that A, is (m,1)-localizing for H, where

m L <m< %Iog(l—i—ﬁ).
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Connection with Green's functions

Decay of Green's functions in (m,/)-localizing boxes

Lemma

Fix m_>0. Let | =(E—A,E+A), with E€ R and A>0, and m > 0.
Suppose that A, is (m,1)-localizing for H, where

m L <m< %Iog(l—i—ﬁ).

Let A€l with dist{A,0(Hp,)}>e L’
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Decay of Green's functions in (m,/)-localizing boxes

Lemma

Fix m_>0. Let | =(E—A,E+A), with E€ R and A>0, and m > 0.
Suppose that \; is (m,1)-localizing for H, where

m L <m< %Iog (1+%) )
Let A el with dist{A,6(Hp,)} >e L'
Then, letting Gy, (1) = (Hp, — A1), we have

|Ga, (A x,y)] < e~ )=yl for gy x,y € Np with |[x -yl > 1—60,

where
m’>m <1 —Cam_ L_(l_r)) )
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The main difficulty

Let A, be (m,/)-localizing for H, and let {((pv,v)}vec(HAL) be an

(m, I)-localized eigensystem for Hj, .
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The main difficulty

Let A, be (m,/)-localizing for H, and let {((pV7v)}v€G(H/\L) be an

(m, I)-localized eigensystem for Hp,. Let x,y € A; with [[x—y| > WLo-
Given v € 6y(Hp,), since either |[x —xy|| > L" or |y —xy|| > L*, we have

oy (X) @y (v)| < e ™MWyl where  m' > m(1—100L7"1).
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The main difficulty

Let A, be (m, [)-localizing for H, and let {(¢y,V)} e (Fn,) be an

(m, I)-localized eigensystem for Hp,. Let x,y € A; with [[x—y| > 100
Given v € 6y(Hp,), since either |[x —xy|| > L" or |y —xy|| > L*, we have

oy (X) @y (v)| < e ™MWyl where  m' > m(1—100L7"1).

G ixy)= )Y, (v=A) e o)+ Y (v=A) T en(x)en(y).

veo(Hy,) veor,(Hn,)
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The main difficulty

Let A, be (m, [)-localizing for H, and let {(¢y,V)} e (Fn,) be an

(m, I)-localized eigensystem for Hp,. Let x,y € A; with [[x—y| > 100
Given v € 6y(Hp,), since either |[x —xy|| > L" or |y —xy|| > L*, we have

oy (X) @y (v)| < e ™MWyl where  m' > m(1—100L7"1).

G ixy)= )Y, (v=A) e o)+ Y (v=A) T en(x)en(y).

veo(Hy,) veor,(Hn,)

We know Y (v-A)leMeny)|<e’ Y el

VGO’/(H/\[) VGG[(H/\[)
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The main difficulty

Let A, be (m, [)-localizing for H, and let {(¢y,V)} e (Fn,) be an

(m, I)-localized eigensystem for Hp,. Let x,y € A; with |[x—y| > 100
Given v € 6y(Hp,), since either |[x —xy|| > L" or |y —xy|| > L*, we have

oy (X) @y (v)| < e ™MWyl where  m' > m(1—100L7"1).

G ixy)= )Y, (v=A) e o)+ Y (v=A) T en(x)en(y).

veo(Hp,) veory(Hn,)

We know Y (v-A)leMeny)|<e’ Y el

VGO’/(H/\[) VGG[(H/\[)

How can we estimate ZVEGIR\,(HM)(V—A)_l(pv(x)(pv(y) 7 We have
no information on @, for v ¢ /. Where does the decay comes from?
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