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ADIABATIC THEOREMS IN QSM

• Hilbert space H, dimH <∞, H(t) = H + V (t),
t ∈ [0,1], V (0) = 0.

ρi = e−βH(0)/Z, ρf = e−βH(1)/Z.

• T > 0 adiabatic parameter, UT (t) time-evolution gener-
ated by H(t/T ) over the time interval [0, T ].

ρi(T ) = U∗T (T )ρiUT (T ).

• Before taking the adiabatic limit T → ∞ we need to take
first the TD (thermodynamic) limit. The limiting objects are
denoted by the superscript (∞).
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• Adiabatic theorem for thermal states (Araki-Avron-Elgart):

lim
T→∞

‖ρ(∞)
i (T )− ρ(∞)

f ‖ = 0.

Proof: Combination of the Avron-Elgart gapless adiabatic
theorem and Araki’s theory of perturbation of KMS struc-
ture.
Assumption: Ergodicity of TD limit quantum dynamical sys-
tem w.r.t. instantaneous dynamics.

• Adiabatic theorem for relative entropy:

lim
T→∞

S(ρ(∞)
i (T )|ρ(∞

i/f ) = S(ρ(∞)
f |ρ(∞)

i/f ).

S(A|B) = tr(A(logA− logB)).
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• Adiabatic theorem for Renyi’s relative entropy:

lim
T→∞

Siα(ρ(∞)
i (T )|ρ(∞

i ) = Siα(ρ(∞)
f |ρ(∞)

i ).

Siα(A|B) = tr(A1−iαBiα).

• Adiabatic theorem for FCS. Let P(∞)
T be the probability mea-

sure on R describing the statistics of energy differences
∆E in two times measurement protocol of the total energy
(initially and at the time T ).

lim
T→∞

∫
R

eiα∆EdP(∞)
T (∆E) = S−iα/β.
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LANDAUER PRINCIPLE

• Finite level quantum system S coupled to a thermal reser-
voir R (HR, HR). dimHS = d, ρS,i = I/d, ρS,f > 0 the
final (target state). Landauer principle concerns energetic
cost of the state transition ρS,i → ρS,f mediated by R.

• Coupled system: H = HS ⊗ HR, H = HR, V (t) local
interaction, V (0) = 0,

V (1) = −
1

β
log ρS,f ,

H(t) = HR+ V (t),

ρi/f = e−βH(0/1)/Z = ρS,i/f ⊗ e−βHR/Z.
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• First TD limit, then adiabatic limit. The transition ρS,i → ρS,f
follows from limT→∞ ‖ρ

(∞)
i (T )− ρ(∞)

f ‖ = 0.

• Landauer bound: The balance equation

∆ST + σT = β∆QT

where, with S(σ) = −tr(σ logσ),

∆ST = S(ρS,i(T ))− S(ρS,i),

∆QT = tr(ρi(T )HR)− tr(ρiHR),

σT = S(ρi(T )|ρS,i(T )⊗ e−βHR/Z).

σT ≥ 0 is the entropy production term, and the Landauer
bound follows

∆ST ≥ β∆QT .
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• After the TD limit, the adiabatic theorem for relative entropy

lim
T→∞

S(ρ(∞)
i (T )|ρ(∞

i ) = S(ρ(∞)
f |ρ(∞)

i )

gives the saturation of the Landauer bound in the adiabatic
limit: limT→∞ σT = 0,

S(ρS,i)− S(ρS,f) = lim
T→∞

∆S
(∞)
T = lim

T→∞
β∆Q

(∞)
T .

• Additional limit ρS,f → |ψ〉〈ψ| gives the familiar form

log d = β∆Q̄(∞).

• Full Counting Statistics goes beyond mean values and cap-
tures fluctuations.
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• The adiabatic theorem for FCS gives

lim
T→∞

∫
R

eiα∆EdP(∞)
T = S−iα/β = tr

(
ρfe

iαβ(log d+log ρf)
)

• If ρS,f =
∑
pk|k〉〈k|, then limT→∞ P(∞)

T = P̄(∞), where

P̄∞
(

1

β
(log d+ log pk)

)
= pk.

The heat is a discrete random variable, and each allowed
quanta of heat corresponds to a transition to a certain level
of the final state.

• The atomic measure P̄(∞) describes the heat fluctuations
around the mean value given by the Landauer bound∫

R
∆EdP̄(∞)(∆E) = S(ρS,i)− S(ρS,f).
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• In the limit ρS,f → |ψ〉〈ψ|, P̄(∞) → δβ−1 log d, together with
convergence of all momenta.

• At the same time

lim
ρS,f→|ψ〉〈ψ|

∫
R

eα∆EdP̄(∞) =


e
α
β log d if α > −β,

1 if α = −β,
∞ if α < −β.

• We expect that this divergence is experimentally observable
via recently proposed interferometry and control protocols
for measuring FCS using an ancilla coupled to the joint sys-
tem S +R.
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