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Motivation: Analysis on nonsmooth domains
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Each of these fractals is obtained from a nested sequence of graphs which has nice, symmetric
replacement rules.
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Spectral decimation (= spectral similarity)

a0

a1 a2

Rammal-Toulouse ‘84, Bellissard ‘88, Fukushima-Shima ‘92, Shima ‘96, etc.
A recursive algorithm for identifying the Laplacian spectrum on highly symmetric, finitely ramified
self-similar fractals.
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Spectral decimation

Definition (Malozemov-Teplyaev ’03)

Let H and H0 be Hilbert spaces. We say that an operator H on H is spectrally similar to H0 on
H0 with functions ϕ0 and ϕ1 if there exists a partial isometry U : H0 →H (that is, UU∗ = I )
such that

U(H − z)−1U∗ = (ϕ0(z)H0 − ϕ1(z))−1 =:
1

ϕ0(z)
(H0 − R(z))−1

for any z ∈ C for which the two sides make sense.

A common class of examples: H0 subspace of H, U∗ is an ortho. projection from H to H0.
Write H − z in block matrix form w.r.t. H0 ⊕H⊥0 :

H − z =

(
I0 − z X
X Q − z

)
.

Then U(H − z)−1U∗ is the inverse of the Schur complement S(z) w.r.t. to the lower-right block
of H − Z : S(z) = (I0 − z)− X (Q − z)−1X .

Issue: There may exist a set of z for which either Q − z is not invertible, or ϕ0(z) = 0.
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Spectral decimation: the main theorem

Spectrum σ(∆) = {z ∈ C : ∆− z does not have a bounded inverse}.

Definition

The exceptional set for spectral decimation is

E(H,H0)
def
= {z ∈ C : z ∈ σ(Q) or ϕ0(z) = 0}.

Theorem (Malozemov-Teplyaev ’03)

Suppose H is spectrally similar to H0. Then for any z /∈ E(H,H0):

R(z) ∈ σ(H0)⇐⇒ z ∈ σ(H) .

R(z) is an eigenvalue of H0 iff z is an eigenvalue of H. Moreover there is a one-to-one map
between the two eigenspaces.
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Example: Z+
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Let ∆ be the graph Laplacian on Z+ (with Neumann
boundary condition at 0), realized as the limit of
graph Laplacians on [0, 2n] ∩ Z+.
If z 6= 2 and R(z) = z(4− z), then

R(z) ∈ σ(−∆)⇐⇒ z ∈ σ(−∆).

σ(−∆) = JR , where JR is the Julia set of R.

JR is the full interval [0, 4].
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The pq-model
A one-parameter model of 1D fractals parametrized by p ∈ (0, 1). Set q = 1− p.

A triadic interval construction, “next easiest” fractal beyond the dyadic interval.

Earlier investigated by Kigami ’04 (heat kernel estimates) and Teplyaev ’05 (spectral decimation
& spectral zeta function).

Assign probability weights to the three segments:

m1 = m3 =
q

1 + q
, m2 =

p

1 + q

Then iterate. Let π be the resulting self-similar probability measure.
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Spectral decimation for the pq-model

The spectral decimation polynomial is R(z) = z(z2−3z+(2+pq))
pq

.

σ(−∆n) = {0, 2} ∪
n−1⋃
m=0

R−m{1± q}

-

6

max(p, q)(0, 0)
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Spectral decimation for the pq-model

The spectral decimation polynomial is R(z) = z(z2−3z+(2+pq))
pq

.

σ(−∆n) = {0, 2} ∪
n−1⋃
m=0

R−m{1± q}

λ0,0 = 0 λ0,1 = 2

λ1,0 = 0 λ1,2 λ1,1 λ1,3 = 2

λ2,0 = 0 λ2,6 λ2,2 λ2,4 λ2,8 λ2,1 λ2,5 λ2,7 λ2,3 λ2,9 = 2
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The pq-model on Z+
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∆p is not self-adjoint w.r.t. `2(Z+), but is self-adjoint w.r.t. the discretization of the
aforementioned self-similar measure π.

Let ∆+
p = D∗∆pD, where

D : `2(Z+)→ `2(3Z+), (Df )(x) = f (3x).

Then ∆p is spectrally similar to ∆+
p . Moreover, ∆p and ∆+

p are isometrically equivalent (in

L2(Z+) or in L2(Z+, π)).
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The pq-model on Z+
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Spectrum σ(H) = {z ∈ C : H − z does not have a bounded inverse}.
Facts from functional analysis:

σ(H) is a nonempty compact subset of C.

σ(H) equals the disjoint union σpp(H) ∪ σac(H) ∪ σsc(H).
pure point spectrum ∪ absolutely continuous spectrum ∪ singularly continuous spectrum

Theorem (C.-Teplyaev, J. Math. Phys. ’16)

If p 6= 1
2

, the Laplacian ∆p , regarded as an operator on either `2(Z+) or L2(Z+, π), has purely
singularly continuous spectrum. The spectrum is the Julia set of the polynomial

R(z) = z(z2−3z+(2+pq))
pq

, which is a topological Cantor set of Lebesgue measure zero.

One of the simplest realizations of purely singularly continuous spectrum. The mechanism
appears to be simpler than those of quasi-periodic or aperiodic Schrodinger operators. (cf.
Simon, Jitomirskaya, Avila, Damanik, Gorodetski, etc.)

See also recent work of Grigorchuk-Lenz-Nagnibeda ‘14, ‘16 on spectra of Schreier graphs.
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Proof of purely singularly continuous spectrum (when p 6= 1
2 )

-
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1 Spectral decimation: ∆p is spectrally similar to ∆+

p , and they are isometrically equivalent.
After taking into account the exceptional set, R(z) ∈ σ(∆p) ⇐⇒ z ∈ σ(∆p).
Notably, the repelling fixed points of R, {0, 1, 2}, lie in σ(∆p).

2 By 1 ,
∞⋃
n=0

R◦−n(0) ⊂ σ(∆p). Meanwhile, since 0 ∈ J (R),
∞⋃
n=0

R◦−n(0) = J (R).

So J (R) ⊂ σ(∆p).

3 If z ∈ σ(∆p), then by 1 , R◦n(z) ∈ σ(∆p) for each n ∈ N. On the one hand, σ(∆p) is
compact. On the other hand, the only attracting fixed point of R is ∞, so F(R) (the Fatou
set) contains the basin of attraction of ∞, whence non-compact. Infer that
z /∈ F(R) = (J (R))c . So σ(∆p) ⊂ J (R).
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Proof of purely singularly continuous spectrum (when p 6= 1
2 )

-
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4 Thus σ(∆p) = J (R). When p 6= 1

2
, J (R) is a disconnected Cantor set.

So σac(∆p) = ∅.
5 Find the formal eigenfunctions corresponding to the fixed points of R, and show that none of

them are in `2(Z+) and in L2(Z+, π). Thus none of the fixed points lie in σpp(∆p). By
spectral decimation, none of the pre-iterates of the fixed points under R are in σpp(∆p).
So σpp(∆p) = ∅.

6 Conclude that σ(∆p) = σsc(∆p).
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The Sierpinski gasket lattice (SGL)

Let ∆ be the graph Laplacian on SGL.
If z /∈ {2, 5, 6} and R(z) = z(5 − z),
then

R(z) ∈ σ(−∆)⇐⇒ z ∈ σ(−∆).

σ(−∆) = JR ∪ D, where JR is
the Julia set of R(z) and
D := {6} ∪

(⋃∞
m=0 R

−m{3}
)
.

JR is a disconnected Cantor set.

Thm. (Teplyaev ’98)
On SGL, σ(∆) = σpp(∆).
Eigenfunctions with finite support are
complete.

→ Localization due to geometry.
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Localized eigenfunctions on SGL
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Random potential and Anderson localization

Hω = −∆ + Vω(x): ω denotes a realization of the random potential.

Definition (Anderson localization)

Hω has spectral localization in an energy interval [a, b] if, with probability 1, σ(Hω) is p.p. in this
interval. Furthermore, Hω has exponential localization if the eigenfunctions with eigenvalues in
[a, b] decay exponentially.

Rigorous methods for proving (exponential) localization: Fröhlich-Spencer ’83, Simon-Wolff ’86,
Aizenman-Molchanov ’93.

Theorem (Aizenman-Molchanov ’93, method of fractional moment of the
resolvent)

Let τ(x , y ; z) =: E[
∣∣〈x |(Hω − z)−1|y〉

∣∣s ]. If

τ(x , y ;E + iε) ≤ Ae−µ|x−y|

for E ∈ (a, b), uniformly in ε 6= 0 and a suitable fixed s ∈ (0, 1), then Hω has exponential
localization.

The Aizenman-Molchanov estimate provides proofs of localization in the case of 1) large disorder,
or 2) extreme energies.
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Anderson localization on SGL

Theorem (Molchanov ’16)

On SGL (and many other finitely ramified fractal lattices, σac(Hω) = ∅.

Proof. Based on the Simon-Wolff method.

Theorem (C.-Molchanov-Teplyaev ’16+)

On SGL, the Aizenman-Molchanov estimate holds, i.e., for E ∈ (a, b) and E /∈ σ(−∆),

τ(x , y ;E + iε) ≤ Ae−µd(x,y)

uniformly in ε 6= 0 and a suitable fixed s ∈ (0, 1). [d(·, ·) can be taken to be the graph metric.]
As a consequence, Hω has exponential localization on SGL in the case of large disorder or
extreme energies.

Proof. If E < 0, then τ(x , y ;E + iε) is a suitable Laplace transform of the heat kernel, which has
a well-known sub-Gaussian upper estimate that decays exponentially with the graph distance
d(x , y):

∃C1,C2 > 0 : pt(x , y) ≤ C1t
−α exp

(
−
(
d(x , y)β

t

)1/(β−1)
)

∀x , y ∈ SGL, ∀t > 0,

where α = log 3
log 5

, and β = log 5
log 2

.

If E > 0, let n(E) be the smallest natural number n such that R◦n(E) < 0, where
R(z) = z(5− z). Use spectral decimation to relate the resolvent at E to the resolvent at R◦n(E).
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Thank you!
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