Spectral decimation \& its applications to spectral analysis on infinite fractal lattices

Joe P. Chen
Department of Mathematics
Colgate University
QMath13: Mathematical Results in Quantum Physics Special Session on Quantum Mechanics with Random Features
Georgia Tech, Atlanta, GA
October 8-11, 2016

Joint works with S. Molchanov and A. Teplyaev
Colgate University

Motivation: Analysis on nonsmooth domains

Some fractals are nicer than others

US 6,452,853 BI

FIGURE 7E

Each of these fractals is obtained from a nested sequence of graphs which has nice, symmetric replacement rules.

Spectral decimation (= spectral similarity)

Rammal-Toulouse '84, Bellissard '88, Fukushima-Shima '92, Shima '96, etc. A recursive algorithm for identifying the Laplacian spectrum on highly symmetric, finitely ramified self-similar fractals.

Spectral decimation

Definition (Malozemov-Teplyaev '03)

Let \mathcal{H} and \mathcal{H}_{0} be Hilbert spaces. We say that an operator H on \mathcal{H} is spectrally similar to H_{0} on \mathcal{H}_{0} with functions φ_{0} and φ_{1} if there exists a partial isometry $U: \mathcal{H}_{0} \rightarrow \mathcal{H}$ (that is, $U U^{*}=I$) such that

$$
U(H-z)^{-1} U^{*}=\left(\varphi_{0}(z) H_{0}-\varphi_{1}(z)\right)^{-1}=: \frac{1}{\varphi_{0}(z)}\left(H_{0}-R(z)\right)^{-1}
$$

for any $z \in \mathbb{C}$ for which the two sides make sense.

A common class of examples: \mathcal{H}_{0} subspace of \mathcal{H}, U^{*} is an ortho. projection from \mathcal{H} to \mathcal{H}_{0}. Write $H-z$ in block matrix form w.r.t. $\mathcal{H}_{0} \oplus \mathcal{H}_{0}^{\perp}$:

$$
H-z=\left(\begin{array}{cc}
I_{0}-z & \bar{X} \\
X & Q-z
\end{array}\right) .
$$

Then $U(H-z)^{-1} U^{*}$ is the inverse of the Schur complement $S(z)$ w.r.t. to the lower-right block of $H-Z: S(z)=\left(I_{0}-z\right)-\bar{X}(Q-z)^{-1} X$.
Issue: There may exist a set of z for which either $Q-z$ is not invertible, or $\varphi_{0}(z)=0$.

Spectral decimation: the main theorem

Spectrum $\sigma(\Delta)=\{z \in \mathbb{C}: \Delta-z$ does not have a bounded inverse $\}$.

Definition

The exceptional set for spectral decimation is

$$
\mathfrak{E}\left(H, H_{0}\right) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}: z \in \sigma(Q) \text { or } \varphi_{0}(z)=0\right\} .
$$

Theorem (Malozemov-Teplyaev '03)

Suppose H is spectrally similar to H_{0}. Then for any $z \notin \mathfrak{E}\left(H, H_{0}\right)$:

- $R(z) \in \sigma\left(H_{0}\right) \Longleftrightarrow z \in \sigma(H)$.
- $R(z)$ is an eigenvalue of H_{0} iff z is an eigenvalue of H. Moreover there is a one-to-one map between the two eigenspaces.

Example: \mathbb{Z}_{+}

Let Δ be the graph Laplacian on \mathbb{Z}_{+}(with Neumann boundary condition at 0), realized as the limit of graph Laplacians on $\left[0,2^{n}\right] \cap \mathbb{Z}_{+}$. If $z \neq 2$ and $R(z)=z(4-z)$, then

- $R(z) \in \sigma(-\Delta) \Longleftrightarrow z \in \sigma(-\Delta)$.
- $\sigma(-\Delta)=\mathcal{J}_{R}$, where \mathcal{J}_{R} is the Julia set of R.
- \mathcal{J}_{R} is the full interval $[0,4]$.

The $p q$-model

A one-parameter model of 1D fractals parametrized by $p \in(0,1)$. Set $q=1-p$.
A triadic interval construction, "next easiest" fractal beyond the dyadic interval.
Earlier investigated by Kigami '04 (heat kernel estimates) and Teplyaev '05 (spectral decimation \& spectral zeta function).

Assign probability weights to the three segments:

$$
m_{1}=m_{3}=\frac{q}{1+q}, \quad m_{2}=\frac{p}{1+q}
$$

Then iterate. Let π be the resulting self-similar probability measure.

Spectral decimation for the $p q$-model

The spectral decimation polynomial is $R(z)=\frac{z\left(z^{2}-3 z+(2+p q)\right)}{p q}$.

$$
\sigma\left(-\Delta_{n}\right)=\{0,2\} \cup \bigcup_{m=0}^{n-1} R^{-m}\{1 \pm q\}
$$

Spectral decimation for the $p q$-model

The spectral decimation polynomial is $R(z)=\frac{z\left(z^{2}-3 z+(2+p q)\right)}{p q}$.
$\sigma\left(-\Delta_{n}\right)=\{0,2\} \cup \bigcup_{m=0}^{n-1} R^{-m}\{1 \pm q\}$

The $p q$-model on \mathbb{Z}_{+}

- Δ_{p} is not self-adjoint w.r.t. $\ell^{2}\left(\mathbb{Z}_{+}\right)$, but is self-adjoint w.r.t. the discretization of the aforementioned self-similar measure π.
- Let $\Delta_{p}^{+}=D^{*} \Delta_{p} D$, where

$$
D: \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow \ell^{2}\left(3 \mathbb{Z}_{+}\right), \quad(D f)(x)=f(3 x)
$$

Then Δ_{p} is spectrally similar to Δ_{p}^{+}. Moreover, Δ_{p} and Δ_{p}^{+}are isometrically equivalent (in $L^{2}\left(\mathbb{Z}_{+}\right)$or in $\left.L^{2}\left(\mathbb{Z}_{+}, \pi\right)\right)$.

The $p q$-model on \mathbb{Z}_{+}

Spectrum $\sigma(H)=\{z \in \mathbb{C}: H-z$ does not have a bounded inverse $\}$.
Facts from functional analysis:

- $\sigma(H)$ is a nonempty compact subset of \mathbb{C}.
- $\sigma(H)$ equals the disjoint union $\sigma_{\mathrm{pp}}(H) \cup \sigma_{\mathrm{ac}}(H) \cup \sigma_{\mathrm{sc}}(H)$.
pure point spectrum \cup absolutely continuous spectrum \cup singularly continuous spectrum

Theorem (C.-Teplyaev, J. Math. Phys. '16)

If $p \neq \frac{1}{2}$, the Laplacian Δ_{p}, regarded as an operator on either $\ell^{2}\left(\mathbb{Z}_{+}\right)$or $L^{2}\left(\mathbb{Z}_{+}, \pi\right)$, has purely singularly continuous spectrum. The spectrum is the Julia set of the polynomial $R(z)=\frac{z\left(z^{2}-3 z+(2+p q)\right)}{p q}$, which is a topological Cantor set of Lebesgue measure zero.

- One of the simplest realizations of purely singularly continuous spectrum. The mechanism appears to be simpler than those of quasi-periodic or aperiodic Schrodinger operators. (cf. Simon, Jitomirskaya, Avila, Damanik, Gorodetski, etc.)
- See also recent work of Grigorchuk-Lenz-Nagnibeda '14, '16 on spectra of Schreier graphs.

Proof of purely singularly continuous spectrum (when $p \neq \frac{1}{2}$)

(1) Spectral decimation: Δ_{p} is spectrally similar to Δ_{p}^{+}, and they are isometrically equivalent.

After taking into account the exceptional set, $R(z) \in \sigma\left(\Delta_{p}\right) \Longleftrightarrow z \in \sigma\left(\Delta_{p}\right)$. Notably, the repelling fixed points of $R,\{0,1,2\}$, lie in $\sigma\left(\Delta_{p}\right)$.
(2) By ©, $\bigcup_{n=0}^{\infty} R^{\circ-n}(0) \subset \sigma\left(\Delta_{p}\right)$. Meanwhile, since $0 \in \mathcal{J}(R), \bigcup_{n=0}^{\infty} R^{\circ-n}(0)=\mathcal{J}(R)$. So $\mathcal{J}(R) \subset \sigma\left(\Delta_{p}\right)$.
(3) If $z \in \sigma\left(\Delta_{p}\right)$, then by $\boldsymbol{\oplus}, R^{\circ n}(z) \in \sigma\left(\Delta_{p}\right)$ for each $n \in \mathbb{N}$. On the one hand, $\sigma\left(\Delta_{p}\right)$ is compact. On the other hand, the only attracting fixed point of R is ∞, so $\mathcal{F}(R)$ (the Fatou set) contains the basin of attraction of ∞, whence non-compact. Infer that $z \notin \mathcal{F}(R)=(\mathcal{J}(R))^{c}$. So $\sigma\left(\Delta_{p}\right) \subset \mathcal{J}(R)$.

Proof of purely singularly continuous spectrum (when $p \neq \frac{1}{2}$)

(9) Thus $\sigma\left(\Delta_{p}\right)=\mathcal{J}(R)$. When $p \neq \frac{1}{2}, \mathcal{J}(R)$ is a disconnected Cantor set. So $\sigma_{\mathrm{ac}}\left(\Delta_{p}\right)=\emptyset$.
(0) Find the formal eigenfunctions corresponding to the fixed points of R, and show that none of them are in $\ell^{2}\left(\mathbb{Z}_{+}\right)$and in $L^{2}\left(\mathbb{Z}_{+}, \pi\right)$. Thus none of the fixed points lie in $\sigma_{\mathrm{pp}}\left(\Delta_{p}\right)$. By spectral decimation, none of the pre-iterates of the fixed points under R are in $\sigma_{\mathrm{pp}}\left(\Delta_{p}\right)$. So $\sigma_{\mathrm{pp}}\left(\Delta_{p}\right)=\emptyset$.
(0 Conclude that $\sigma\left(\Delta_{p}\right)=\sigma_{\mathrm{sc}}\left(\Delta_{p}\right)$.

The Sierpinski gasket lattice (SGL)

Let Δ be the graph Laplacian on SGL. If $z \notin\{2,5,6\}$ and $R(z)=z(5-z)$, then

- $R(z) \in \sigma(-\Delta) \Longleftrightarrow z \in \sigma(-\Delta)$.
- $\sigma(-\Delta)=\mathcal{J}_{R} \cup \mathcal{D}$, where \mathcal{J}_{R} is the Julia set of $R(z)$ and

$$
\mathcal{D}:=\{6\} \cup\left(\bigcup_{m=0}^{\infty} R^{-m}\{3\}\right) .
$$

- \mathcal{J}_{R} is a disconnected Cantor set.

Thm. (Teplyaev '98)
On SGL, $\sigma(\Delta)=\sigma_{\mathrm{pp}}(\Delta)$.
Eigenfunctions with finite support are complete.

\rightarrow Localization due to geometry.

Localized eigenfunctions on SGL

Random potential and Anderson localization

$H_{\omega}=-\Delta+V_{\omega}(x): \omega$ denotes a realization of the random potential.

Definition (Anderson localization)

H_{ω} has spectral localization in an energy interval $[a, b]$ if, with probability $1, \sigma\left(H_{\omega}\right)$ is p.p. in this interval. Furthermore, H_{ω} has exponential localization if the eigenfunctions with eigenvalues in $[a, b]$ decay exponentially.

Rigorous methods for proving (exponential) localization: Fröhlich-Spencer '83, Simon-Wolff '86, Aizenman-Molchanov '93.

Theorem (Aizenman-Molchanov '93, method of fractional moment of the resolvent)

Let $\left.\tau(x, y ; z)=:\left.\mathbb{E}\left[\left|\langle x|\left(H_{\omega}-z\right)^{-1}\right| y\right\rangle\right|^{s}\right]$. If

$$
\tau(x, y ; E+i \epsilon) \leq A e^{-\mu|x-y|}
$$

for $E \in(a, b)$, uniformly in $\epsilon \neq 0$ and a suitable fixed $s \in(0,1)$, then H_{ω} has exponential localization.

The Aizenman-Molchanov estimate provides proofs of localization in the case of 1) large disorder, or 2) extreme energies.

Anderson localization on SGL

Theorem (Molchanov '16)

On SGL (and many other finitely ramified fractal lattices, $\sigma_{\mathrm{ac}}\left(H_{\omega}\right)=\emptyset$.
Proof. Based on the Simon-Wolff method.

Theorem (C.-Molchanov-Teplyaev '16+)

On SGL, the Aizenman-Molchanov estimate holds, i.e., for $E \in(a, b)$ and $E \notin \sigma(-\Delta)$,

$$
\tau(x, y ; E+i \epsilon) \leq A e^{-\mu d(x, y)}
$$

uniformly in $\epsilon \neq 0$ and a suitable fixed $s \in(0,1)$. [d (\cdot, \cdot) can be taken to be the graph metric.] As a consequence, H_{ω} has exponential localization on SGL in the case of large disorder or extreme energies.

Proof. If $E<0$, then $\tau(x, y ; E+i \epsilon)$ is a suitable Laplace transform of the heat kernel, which has a well-known sub-Gaussian upper estimate that decays exponentially with the graph distance $d(x, y)$:

$$
\exists C_{1}, C_{2}>0: \quad p_{t}(x, y) \leq C_{1} t^{-\alpha} \exp \left(-\left(\frac{d(x, y)^{\beta}}{t}\right)^{1 /(\beta-1)}\right) \quad \forall x, y \in S G L, \quad \forall t>0,
$$

where $\alpha=\frac{\log 3}{\log 5}$, and $\beta=\frac{\log 5}{\log 2}$.
If $E>0$, let $n(E)$ be the smallest natural number n such that $R^{\circ n}(E)<0$, where $R(z)=z(5-z)$. Use spectral decimation to relate the resolvent at E to the resolvent at $R^{\circ n}(E)$.

Thank you!

