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Motivation: Analysis on nonsmooth domains
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Some fractals are nicer than others
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Each of these fractals is obtained from a nested sequence of graphs which has nice, symmetric
replacement rules.
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Spectral decimation (= spectral similarity)
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Rammal-Toulouse ‘84, Bellissard ‘88, Fukushima-Shima ‘92, Shima ‘96, etc.
A recursive algorithm for identifying the Laplacian spectrum on highly symmetric, finitely ramified
self-similar fractals.
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Spectral decimation

Definition (Malozemov-Teplyaev '03)

Let H and Ho be Hilbert spaces. We say that an operator H on H is spectrally similar to Hy on
Ho with functions g and 1 if there exists a partial isometry U : Ho — H (that is, UU* = [)
such that 1

" %0(2)

U(H - 2)71U" = (po(2)Ho — ¢1(2) ™" = (Ho — R(z))™"

for any z € C for which the two sides make sense.

A common class of examples: Hg subspace of H, U* is an ortho. projection from H to Ho.
Write H — z in block matrix form w.r.t. Ho ® ’Hé‘:

Then U(H — z)~1U* is the inverse of the Schur complement S(z) w.r.t. to the lower-right block
of H—Z: S(z) = (lo — z) — X(Q — z)71X.

Issue: There may exist a set of z for which either Q@ — z is not invertible, or apo(z) =0.
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Spectral decimation: the main theorem

Spectrum o(A) = {z € C: A — z does not have a bounded inverse}.
Definition
The exceptional set for spectral decimation is

E(H, Ho) E' {z € C: z € 5(Q) or po(z) = 0}.

Theorem (Malozemov-Teplyaev '03)
Suppose H is spectrally similar to Hy. Then for any z ¢ €(H, Hp):
o R(z) € o(Hy) < z € o(H) .

o R(z) is an eigenvalue of Hy iff z is an eigenvalue of H. Moreover there is a one-to-one map
between the two eigenspaces.
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Example: Z 4
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Let A be the graph Laplacian on Z4 (with Neumann 10f
boundary condition at 0), realized as the limit of ask
graph Laplacians on [0,2"] N Z. =
If z#2 and R(z) = z(4 — z), then E "OF
o R(z) € o(—A) <= z € o(—A). -0ay
e o(—A) = Jgr, where Jg is the Julia set of R. e A , , . .
e Jr is the full interval [0, 4]. ’ o !
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The pg-model
A one-parameter model of 1D fractals parametrized by p € (0,1). Set g =1 — p.

A triadic interval construction, “next easiest” fractal beyond the dyadic interval.

Earlier investigated by Kigami '04 (heat kernel estimates) and Teplyaev '05 (spectral decimation
& spectral zeta function).
Assign probability weights to the three segments:
_ . q _ P
- 7, my; = ——
1+gq 1+gq
Then iterate. Let 7 be the resulting self-similar probability measure.

mip = m3

° °
— -
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Spectral decimation for the pg-model

The spectral decimation polynomial is R(z) =
n—1

o(—=an) ={0,2}u |J R-™{1+q}

m=0

2(22 —3z+(2+pq))
Pq :

(0,0)
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Spectral decimation for the pg-model

2
The spectral decimation polynomial is R(z) = %.

n—1
o(—An) ={0,2} U | J R ™{1£q}

m=0
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The pg-model on Z

> = 4= > > > < > > < > — >
1 gp P9 gp gqp P9 P9g gp pg qp

o A, is not self-adjoint w.r.t. £2(Z), but is self-adjoint w.r.t. the discretization of the
aforementioned self-similar measure 7.

o Let Ay = D*ApD, where
D :3(Z+) — £3(324), (Df)(x) = F(3x).

Then A, is spectrally similar to A, Moreover, A, and A} are isometrically equivalent (in
L?(Z4) or in L2(Zy,T)).
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The pg-model on Z

° ° ® ° ° ° *—— o o o >
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1 gp Pqgq 9P qpP PG PG P pPg qp

Spectrum o(H) = {z € C: H — z does not have a bounded inverse}.
Facts from functional analysis:

o o(H) is a nonempty compact subset of C.

o o(H) equals the disjoint union opp(H) U oac(H) U osc(H).
pure point spectrum U absolutely continuous spectrum U singularly continuous spectrum

Theorem (C.-Teplyaev, J. Math. Phys. '16)

If p# %, the Laplacian Ap, regarded as an operator on either (>(Z..) or L?(Zy,7), has purely
singularly continuous spectrum. The spectrum is the Julia set of the polynomial

R(z) = 2(2% —3z+(2+pq))

g , which is a topological Cantor set of Lebesgue measure zero.

@ One of the simplest realizations of purely singularly continuous spectrum. The mechanism
appears to be simpler than those of quasi-periodic or aperiodic Schrodinger operators. (cf.
Simon, Jitomirskaya, Avila, Damanik, Gorodetski, etc.)

@ See also recent work of Grigorchuk-Lenz-Nagnibeda ‘14, ‘16 on spectra of Schreier graphs.
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Proof of purely singularly continuous spectrum (when p # %)

@ Spectral decimation: A, is spectrally similar to A;‘, and they are isometrically equivalent.
After taking into account the exceptional set, R(z) € 0(Ap) <= z € o(Ap).

Notably, the repelling fixed points of R, {0, 1,2}, lie in o(Ap).

oo o0
@ By @, | J R°7"(0) C o(Ap). Meanwhile, since 0 € J(R), | J R°7"(0) = J(R).
n=0 n=0
So J(R) C o(Ap).
@ If z € o(Ap), then by @, R°"(z) € o(Ap) for each n € N. On the one hand, o(Ap) is
compact. On the other hand, the only attracting fixed point of R is oo, so F(R) (the Fatou
set) contains the basin of attraction of oo, whence non-compact. Infer that

z ¢ F(R) = (J(R)). Soa(Ap) C T(R).
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Proof of purely singularly continuous spectrum (when p # %)

© Thus o(Ap) = J(R). When p # %, J(R) is a disconnected Cantor set.
So gac(Ap) = 0.

@ Find the formal eigenfunctions corresponding to the fixed points of R, and show that none of
them are in ¢?(Z4) and in L?(Z4, ). Thus none of the fixed points lie in opp(Ap). By
spectral decimation, none of the pre-iterates of the fixed points under R are in opp(Ap).

So opp(Ap) = 0.

@ Conclude that o(Ap) = osc(Ap).
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The Sierpinski gasket lattice (SGL)

Let A be the graph Laplacian on SGL.
If z ¢ {2,5,6} and R(z) = z(5 — z),
then
o R(z) € o(—A) <= z € o(—A).
o o(—A) =JrUD, where Jg is
the Julia set of R(z) and
D= {6} U (UnZo R™™{3}).
@ Jr is a disconnected Cantor set.
Thm. (Teplyaev '98)
On SGL, o(A) = opp(A).
Eigenfunctions with finite support are
complete.

— Localization due to geometry.
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Localized eigenfunctions on SGL

Z=06

Joe P. Chen (Colgate) Spectral decimation QMath 13 Atlanta 10/2016 16 /19



Random potential and Anderson localization

H.,, = —A + V,,(x): w denotes a realization of the random potential.

Definition (Anderson localization)

H,, has spectral localization in an energy interval [a, b] if, with probability 1, o(H.) is p.p. in this
interval. Furthermore, H,, has exponential localization if the eigenfunctions with eigenvalues in
[a, b] decay exponentially.

Rigorous methods for proving (exponential) localization: Frohlich-Spencer '83, Simon-Wolff '86,
Aizenman-Molchanov '93.

Theorem (Aizenman-Molchanov '93, method of fractional moment of the
resolvent)

Let 7(x,y: 2) =: El|{x|(Ho = 2) 71 y)[7]. If
7(x,y; E + ie) < Ae#x—I

for E € (a, b), uniformly in € # 0 and a suitable fixed s € (0,1), then H,, has exponential
localization.

v

The Aizenman-Molchanov estimate provides proofs of localization in the case of 1) large disorder,
or 2) extreme energies.
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Anderson localization on SGL
Theorem (Molchanov '16)

On SGL (and many other finitely ramified fractal lattices, cac(Hw) = 0.

Proof. Based on the Simon-Wolff method.
Theorem (C.-Molchanov-Teplyaev '16+)
On SGL, the Aizenman-Molchanov estimate holds, i.e., for E € (a, b) and E ¢ o(—A),
7(x,y; E + ie) < AeHd()
uniformly in € # 0 and a suitable fixed s € (0,1). [d(-,-) can be taken to be the graph metric.]

As a consequence, H,, has exponential localization on SGL in the case of large disorder or
extreme energies.

v

Proof. If E <0, then 7(x,y; E + i€) is a suitable Laplace transform of the heat kernel, which has
a well-known sub-Gaussian upper estimate that decays exponentially with the graph distance
d(x,y):

d(x,y)?

1/(B-1)
3G, G >0 pe(x,y) < Gt “exp <— (f) ) Vx,y € SGL, Vt >0,

_ log3 _ logs
where o = log 5’ and 8 = Tog 2"

If E >0, let n(E) be the smallest natural number n such that R°"(E) < 0, where
R(z) = z(5 — z). Use spectral decimation to relate the resolvent at E to the resolvent at R°"(E).
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Thank you!

Joe P. Chen (Colgate) Spectral decimation



