Entanglement in random tensor networks

$$
\text { arXiv:1601.01694, } 1608.02595
$$

Patrick Hayden, Sepehr Nezami, Nathaniel Thomas, Xiaoliang Qi, Michael Walter, Zhao Yang

Institute for Theoretical Physics, Stanford University
QMath13, Georgia Tech, October 2016

Tensor network states

Graphical notation:

$$
\Psi_{i j k} \text { pure state in }\left(\mathbb{C}^{D}\right)^{3}
$$

$$
\Psi_{i j l m}=\sum_{k=1}^{D} V_{x, i j k} V_{y, k l m} \text { with } V_{x}, V_{y}
$$

In general: Given a graph $G=(V, E)$ and bond dimension D, define

$$
|\Psi\rangle=\left(\bigotimes_{\langle x y\rangle \in E}\langle x y|\right)\left(\bigotimes_{x \in V}\left|V_{x}\right\rangle\right)
$$

- $\left|V_{x}\right\rangle$ tensors
- $|x y\rangle=\sum_{i=1}^{D}|i, i\rangle$ max. entangled

Model: Random tensor network states

Given a graph $G=(V, E)$ and bond dimension D, define

$$
|\Psi\rangle=\left(\bigotimes_{\langle x y\rangle \in E}\langle x y|\right)\left(\bigotimes_{x \in V}\left|V_{x}\right\rangle\right)
$$

- $\left|V_{x}\right\rangle$ i.i.d. random (e.g., Haar)
- $|x y\rangle=\sum_{i=1}^{D}|i, i\rangle$ max. entangled

Motivation

- Mathematics: Natural 'geometric' generalization of Haar measure
- QIT: Entanglement distillation in entangled pair states
- Tensor network kinematics:

$$
S(A) \leq \log (D) \min \left|\gamma_{A}\right|
$$

Generically saturated or fine-tuned?

- Holographic principle in quantum gravity, as realized by AdS/CFT correspondence:

$$
S(A)=\frac{1}{4 G_{N}} \min \left|\gamma_{A}\right|
$$

Toy models from tensor networks?

Main result I

Theorem (Bipartite entanglement)

In random tensor network states: $S(A)=\log (D) \min \left|\gamma_{A}\right|-O(1)$ w.h.p.

Prior work: Collins et al (random MPS), Hastings (random MERA).
Followup: Hastings (identical tensors, limiting spectral distribution in some cases).

Holographic entropy inequalities

'Holographic' entropy formula has interesting properties:

$$
S(A)=c \min \left|\gamma_{A}\right|
$$

Can be systematically studied via entropy cone formalism of Zhang \& Yeung:

- finitely many entropy inequalities (for any number of subsystems)
- combinatorial criterion for proving nonstandard entropy inequalities
- ex.: monogamy of mutual information

$$
I(A: B)+I(A: C) \leq I(A: B C)
$$

is unique additional inequality for fourpartite systems. But correlations are not in general monogamous - not valid for Shannon, vN entropy.

Does the mutual information in these states measure q. entanglement?

For this question, we use random stabilizer states as the vertex tensors $\left|V_{x}\right\rangle$. Then the tensor network state $|\Psi\rangle$ is also a stabilizer state. Recall:

Stabilizer state: Eigenvector of maximal abelian subgroup of Pauli group. ${ }^{1}$

- class of quantum states with efficient classical description
- 2-design; 3-design if and only if $p=2$ (Küng \& Gross).
- tripartite entanglement structure (Bravyi, Fattal \& Gottesman):

$$
I(A: B)=2 c+g
$$

where $|G H Z\rangle \propto \sum_{j=1}^{p}|j j j\rangle$ (separable marginals).
${ }^{1}$ For \mathbb{C}^{p}, generated by $X|j\rangle=|j+1\rangle, Z|j\rangle=\exp (2 \pi i j / p)|j\rangle$. For $\left(\mathbb{C}^{p}\right)^{\otimes n}$, use \otimes.

Main result II

Theorem (Tripartite entanglement)

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p.

Prior work: Smith \& Leung (single random stabilizer state).

Corollary

Can distill $\simeq \frac{1}{2} l(A: B)$ maximally entangled pairs by local Clifford unitaries.

- mutual information measures entanglement (w.h.p.).

Main result II

Theorem (Tripartite entanglement)

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p.

Prior work: Smith \& Leung (single random stabilizer state).

Corollary

Can distill $\simeq \frac{1}{2} l(A: B)$ maximally entangled pairs by local Clifford unitaries.

- mutual information measures entanglement (w.h.p.).

Higher-partite entanglement

We can iteratively distill bipartite maximal entanglement between any two subsystems \rightsquigarrow residual state has $I(A: B)=O(1)$ etc. (w.h.p.)

In a four-partite system, this implies ("perfect tensor")

$$
S(A), \ldots, S(D) \simeq-\frac{1}{2} I_{3}, \quad S(A B), \ldots, S(C D) \simeq-I_{3}
$$

where $I_{3}=I(A: B)+I(A: C)-I(A: B C)$ is the tripartite information:

- invariant under distillation, can estimate from geometry of graph
- $I_{3}<0$ diagnoses four-partite entanglement
- another proof that the mutual info is monogamous

Proof ingredient I: Spin models

Theorem (Bipartite entanglement)

In random tensor network states: $S(A)=\log (D) \min \left|\gamma_{A}\right|-O(1)$ w.h.p.
Sketch of proof: Lower-bound Rényi entropy $S_{2}(A)=-\log \operatorname{tr} \rho_{A}^{2}$.
Using swap trick \& second moments:

$$
\mathbb{E}\left[\operatorname{tr} \rho_{A}^{2}\right] \propto Z_{A}=\sum_{\left\{s_{x}\right\}} e^{-\log D \sum_{\langle x\rangle\rangle}\left(1-s_{x} s_{y}\right) / 2}
$$

Ferromagnetic Ising model at $\beta=\log D$ with mixed boundary conditions.

- large $D /$ low T : dominated by energy of minimal domain wall More precise estimates possible in terms of geometry of graph!

Proof ingredient I: Spin models

Theorem (Bipartite entanglement)

In random tensor network states: $S(A)=\log (D) \min \left|\gamma_{A}\right|-O(1)$ w.h.p.
Sketch of proof: Lower-bound Rényi entropy $S_{2}(A)=-\log \operatorname{tr} \rho_{A}^{2}$.
Using swap trick \& second moments:

$$
\mathbb{E}\left[\operatorname{tr} \rho_{A}^{2}\right] \propto Z_{A}=\sum_{\left\{s_{x}\right\}} e^{-\log D \sum_{\langle x y\rangle}\left(1-s_{x} s_{y}\right) / 2}
$$

Ferromagnetic Ising model at $\beta=\log D$ with mixed boundary conditions.

- $S_{2}(A)$ is related to free energy $F=-\log Z_{A}$
- large $D /$ low T : dominated by energy of minimal domain wall More precise estimates possible in terms of geometry of graph!

Proof ingredient II: Higher moments

Theorem (Tripartite entanglement)

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p. Sketch of proof: Diagnose via

$$
\# \mathrm{GHZ}=S(A)+S(B)+S(C)-\log \operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}
$$

- ferromagnetic spin model with variables $\pi_{x} \in S_{3}$,
 cyclic boundary conditions

Proof ingredient II: Higher moments

Theorem (Tripartite entanglement)

In random stabilizer network states: $\# \mathrm{GHZ}(A: B: C)=O(1)$ w.h.p.
Sketch of proof: Diagnose via

$$
\# \mathrm{GHZ}=S(A)+S(B)+S(C)-\log \operatorname{tr}\left(\rho_{A B}^{T_{B}}\right)^{3}
$$

- ferromagnetic spin model with variables $\pi_{x} \in G_{3}(p)$,
 cyclic boundary conditions
Lemma (Third moment of random stabilizer state, $p \equiv 2(\bmod 3))$

$$
\mathbb{E}\left[\psi^{\otimes 3}\right]=\frac{1}{D(D+1)(D+p)} \sum_{T \in G_{3}(p)} r(T)^{\otimes n}
$$

with $G_{3}(p)$ the group of orthogonal \& stochastic 3×3-matrices over \mathbb{F}_{p}.

Summary and outlook

Random tensor networks:

- Bipartite \& multipartite entanglement properties dictated by geometry
- Techniques: spin models for random tensor averages, moments

What we did not discuss today:

- Connection to entanglement distillation
- Geometric subsystem codes ('holographic' codes of Pastawski et al)
- Toy model \& explanation of some structural features of AdS/CFT

Thank you for your attention!

Summary and outlook

Random tensor networks:

- Bipartite \& multipartite entanglement properties dictated by geometry
- Techniques: spin models for random tensor averages, moments

What we did not discuss today:

- Connection to entanglement distillation
- Geometric subsystem codes ('holographic' codes of Pastawski et al)
- Toy model \& explanation of some structural features of AdS/CFT

Thank you for your attention!

Summary and outlook

Random tensor networks:

- Bipartite \& multipartite entanglement properties dictated by geometry
- Techniques: spin models for random tensor averages, moments

What we did not discuss today:

- Connection to entanglement distillation
- Geometric subsystem codes ('holographic' codes of Pastawski et al)
- Toy model \& explanation of some structural features of AdS/CFT

Thank you for your attention!

