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Non-local games

Referee

Alice Bob

Referee

Win Lose

x y

a b

Win/lose based on outputs a, b
and inputs x , y

Alice and Bob must cooperate
to win

Winning conditions known in
advance
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Non-local games

Referee

Alice Bob

Referee

Win Lose

x y

a b

Win/lose based on outputs a, b
and inputs x , y

Alice and Bob must cooperate
to win

Winning conditions known in
advance

Complication: players cannot
communicate while the game is
in progress
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Strategies for non-local games

Referee

Alice Bob

Referee

Win Lose

x y

a b

Suppose game is played many
times, with inputs drawn from
some public distribution π

To outside observer, Alice and
Bob’s strategy is described by:

P(a, b|x , y) = the probability of
output (a, b) on input (x , y)

Correlation matrix: collection of
numbers {P(a, b|x , y)}
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Classical and quantum strategies

Referee

Alice Bob

Referee

Win Lose

x y

a b

P(a, b|x , y) = the probability of output (a, b) on
input (x , y)

Value of game ω = winning probability using
strategy {P(a, b|x , y)}

What type of strategies might Alice and Bob use?

Classical: can use randomness, flip coin to determine output.

Correlation matrix will be P(a, b|x , y) = A(a|x)B(b|y).

Quantum: Alice and Bob can share entangled quantum state

Bell’s theorem: Alice and Bob can do better with an entangled
quantum state than they can do classically
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Quantum strategies

How do we describe a quantum strategy?

Use axioms of quantum mechanics:

• Physical system described by (finite-dimensional) Hilbert space

• No communication ⇒ Alice and Bob each have their own
(finite dimensional) Hilbert spaces HA and HB

• Hilbert space for composite system is H = HA ⊗HB

• Shared quantum state is a unit vector |ψ〉 ∈ H
• Alice’s output on input x is modelled by measurement

operators {Mx
a }a on HA

• Similarly Bob has measurement operators {Ny
b }b on HB

Quantum correlation: P(a, b|x , y) = 〈ψ|Mx
a ⊗ Ny

b |ψ〉
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Quantum correlations

Set of quantum correlations:

Cq =
{
{P(a, b|x , y)} :P(a, b|x , y) = 〈ψ|Mx

a ⊗ Ny
b |ψ〉 where

|ψ〉 ∈ HA ⊗HB , where HA,HB fin dim’l

Mx
a and Ny

b are projections on HA and HB∑
a

Mx
a = I and

∑
b

Ny
b = I for all x , y

}
Two variants:

1 Cqs : Allow HA and HB to be infinite-dimensional

2 Cqa = Cq: limits of finite-dimensional strategies

Relations: Cq ⊆ Cqs ⊆ Cqa
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Commuting-operator model

Another model for composite systems: commuting-operator model

In this model:

• Alice and Bob each have an algebra of observables A and B
• A and B act on the joint Hilbert space H
• A and B commute: if a ∈ A, b ∈ B, then ab = ba.

This model is used in quantum field theory

Correlation set:

Cqc :=
{
{P(a, b|x , y)} : P(a, b|x , y) = 〈ψ|Mx

aN
y
b |ψ〉 ,

Mx
aN

y
b = Ny

bM
x
a

}
Hierarchy: Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc
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Tsirelson’s problem

Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc

strong

weak

Two models of QM: tensor product and commuting-operator

Tsirelson problems: is Ct , t ∈ {q, qs, qa} equal to Cqc

Fundamental questions:

1 What is the power of these models?

Strong Tsirelson: is Cq = Cqc?

2 Are there observable differences between these two models,
accounting for noise and experimental error?

Weak Tsirelson: is Cqa = Cqc?
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What do we know?

Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc

strong

weak

Theorem (Ozawa, JNPPSW, Fr)

Cqa = Cqc if and only if Connes’ embedding problem is true

Theorem (S)

Cqs 6= Cqc
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Other fundamental questions

Question: Given a non-local game, can we compute the optimal
value ωt over strategies in Ct , t ∈ {qa, qc}?

Theorem (Navascués, Pironio, Aćın)

Given a non-local game, there is a hierarchy of SDPs which
converge in value to ωqc

Problem: no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if ωqc < 1
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Two theorems

Theorem (S)

Cqs 6= Cqc

Theorem (S)

It is undecidable to tell if ωqc < 1

Proofs: make connection to group theory via linear system games
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Linear system games

Start with m × n linear system Ax = b over Z2

=⇒ Get a non-local game G , and

=⇒ a solution group Γ

Γ: Group generated by X1, . . . ,Xn, satisfying relations

1 X 2
j = [Xj , J] = J2 = e for all j

2
∏n

j=1 X
Aij

j = Jbi for all i

3 If Aij ,Aik 6= 0, then [Xj ,Xk ] = e.
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Quantum solutions of Ax = b

Solution group Γ: Group generated by X1, . . . ,Xn, satisfying
relations

1 X 2
j = [Xj , J] = J2 = e for all j

2
∏n

j=1 X
Aij

j = Jbi for all i

3 If Aij ,Aik 6= 0, then [Xj ,Xk ] = e.

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

• G has a perfect strategy in Cqs if and only if Γ has a
finite-dimensional representation with J 6= I

• G has a perfect strategy in Cqc if and only if J 6= e in Γ
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Group embedding theorem

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

• G has a perfect strategy in Cqs if and only if Γ has a
finite-dimensional representation with J 6= I

• G has a perfect strategy in Cqc if and only if J 6= e in Γ

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J0
in the center of G such that J20 = e.

Then there is an injective homomorphism φ : G ↪→ Γ, where Γ is
the solution group of a linear system Ax = b, with φ(J0) = J.
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How do we prove the embedding theorem?

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J0
in the center of G such that J20 = e.

Then there is an injective homomorphism φ : G ↪→ Γ, where Γ is
the solution group of a linear system Ax = b, with φ(J0) = J.

Given finitely-presented group G , we get Γ from a linear system

But what linear system?

Linear systems over Z2 correspond to vertex-labelled hypergraphs

So we can answer this pictorially by writing down a hypergraph...
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The hypergraph by example

zy uvx

〈x , y , z , u, v : xyxz = xuvu = e = x2 = y2 = · · · = v2〉

does not include preprocessing
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The end

〈x , y , z , u, v : xyxz = xuvu = e = x2 = y2 = · · · = v2〉

Thank-you!
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