Tsirelson's problem and linear system games

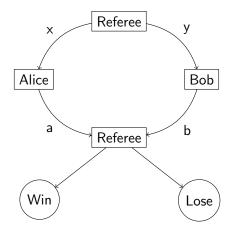
William Slofstra

IQC, University of Waterloo

October 10th, 2016

includes joint work with Richard Cleve and Li Liu

Non-local games

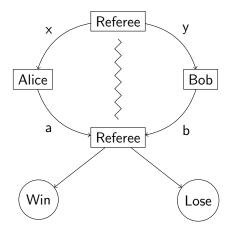


Win/lose based on outputs a, band inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Non-local games

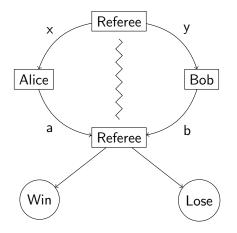


Win/lose based on outputs a, band inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress Strategies for non-local games



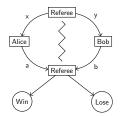
Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob's strategy is described by:

P(a, b|x, y) = the probability of output (a, b) on input (x, y)

Correlation matrix: collection of numbers $\{P(a, b|x, y)\}$

Classical and quantum strategies



P(a, b|x, y) = the probability of output (a, b) on input (x, y)Value of game $\omega =$ winning probability using strategy $\{P(a, b|x, y)\}$

What type of strategies might Alice and Bob use?

Classical: can use randomness, flip coin to determine output.

Correlation matrix will be P(a, b|x, y) = A(a|x)B(b|y).

Quantum: Alice and Bob can share entangled quantum state

Bell's theorem: Alice and Bob can do better with an entangled quantum state than they can do classically

Quantum strategies

How do we describe a quantum strategy?

Use axioms of quantum mechanics:

- Physical system described by (finite-dimensional) Hilbert space
- No communication \Rightarrow Alice and Bob each have their own (finite dimensional) Hilbert spaces \mathcal{H}_A and \mathcal{H}_B
- Hilbert space for composite system is $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- Shared quantum state is a unit vector $|\psi
 angle\in\mathcal{H}$
- Alice's output on input x is modelled by measurement operators {M^x_a}_a on H_A
- Similarly Bob has measurement operators $\{N_b^y\}_b$ on \mathcal{H}_B

Quantum correlation: $P(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$

Quantum correlations

Set of quantum correlations:

$$C_{q} = \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M_{a}^{x} \otimes N_{b}^{y} | \psi \rangle \text{ where} \\ |\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text{ where } \mathcal{H}_{A}, \mathcal{H}_{B} \text{ fin dim'l} \\ M_{a}^{x} \text{ and } N_{b}^{y} \text{ are projections on } \mathcal{H}_{A} \text{ and } \mathcal{H}_{B} \\ \sum_{a} M_{a}^{x} = I \text{ and } \sum_{b} N_{b}^{y} = I \text{ for all } x, y \right\}$$

Two variants:

 $C_{qs}: Allow \mathcal{H}_A and \mathcal{H}_B to be infinite-dimensional$

• $C_{qa} = \overline{C_q}$: limits of finite-dimensional strategies Relations: $C_q \subseteq C_{qs} \subseteq C_{qa}$

Commuting-operator model

Another model for composite systems: *commuting-operator model* In this model:

- Alice and Bob each have an algebra of observables ${\cal A}$ and ${\cal B}$
- ${\mathcal A}$ and ${\mathcal B}$ act on the joint Hilbert space ${\mathcal H}$
- \mathcal{A} and \mathcal{B} commute: if $a \in \mathcal{A}$, $b \in \mathcal{B}$, then ab = ba.

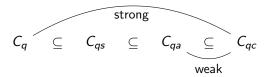
This model is used in quantum field theory

Correlation set:

$$C_{qc} := \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M_a^x N_b^y | \psi \rangle, \\ M_a^x N_b^y = N_b^y M_a^x \right\}$$

Hierarchy: $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$

Tsirelson's problem



Two models of QM: tensor product and commuting-operator

Tsirelson problems: is C_t , $t \in \{q, qs, qa\}$ equal to C_{qc}

Fundamental questions:

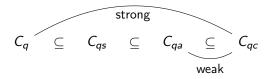
• What is the power of these models?

Strong Tsirelson: is $C_q = C_{qc}$?

Are there observable differences between these two models, accounting for noise and experimental error?

Weak Tsirelson: is $C_{qa} = C_{qc}$?

What do we know?



Theorem (Ozawa, JNPPSW, Fr)

 $C_{qa} = C_{qc}$ if and only if Connes' embedding problem is true

Theorem (S)
$$C_{qs} \neq C_{qc}$$

William Slofstra

Tsirelson's problem and linear system games

Other fundamental questions

Question: Given a non-local game, can we compute the optimal value ω_t over strategies in C_t , $t \in \{qa, qc\}$?

Theorem (Navascués, Pironio, Acín)

Given a non-local game, there is a hierarchy of SDPs which converge in value to ω_{qc}

Problem: no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1$

Two theorems

Theorem (S)

 $C_{qs} \neq C_{qc}$

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1$

Proofs: make connection to group theory via linear system games

Tsirelson's problem and linear system games

Linear system games

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

$$\implies$$
 Get a non-local game G, and

- \implies a solution group Γ
- F: Group generated by X_1, \ldots, X_n , satisfying relations **1** $X_j^2 = [X_j, J] = J^2 = e$ for all j **2** $\prod_{j=1}^n X_j^{A_{ij}} = J^{b_i}$ for all i**3** If $A_{ij}, A_{ik} \neq 0$, then $[X_j, X_k] = e$.

Quantum solutions of Ax = b

Solution group Γ : Group generated by X_1, \ldots, X_n , satisfying relations

•
$$X_j^2 = [X_j, J] = J^2 = e$$
 for all j

$$\mathbf{2} \prod_{j=1}^{n} X_j^{\mathbf{y}_j} = J^{\mathbf{b}_i} \text{ for all } i$$

$$If A_{ij}, A_{ik} \neq 0, then [X_j, X_k] = e.$$

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ

Group embedding theorem

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system Ax = b, with $\phi(J_0) = J$.

- 4 同 6 4 日 6 4 日 6

How do we prove the embedding theorem?

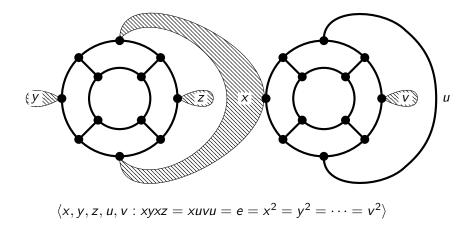
Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system Ax = b, with $\phi(J_0) = J$.

Given finitely-presented group G, we get Γ from a linear system But what linear system?

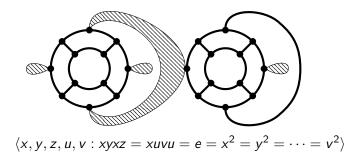
Linear systems over \mathbb{Z}_2 correspond to vertex-labelled hypergraphs So we can answer this pictorially by writing down a hypergraph... The hypergraph by example



does not include preprocessing

Tsirelson's problem and linear system games

The end



Thank-you!

Tsirelson's problem and linear system games

William Slofstra