

# **Categories and Quantum Computing**

Carlos M. Ortiz Marrero
Pacific Northwest National Laboratory

Joint work with Paul Bruillard

QMath13: Mathematical Results in Quantum Physics October 10, 2016



## Overview



1. Topological Quantum Computing

2. Categories

3. Classification by Rank

# Topological Quantum Computing

# **Quantum Computation?**



## **Definition** [Freedman, Kitaev, Larsen, Wang '03]

Quantum Computation is any computational model based upon the theoretical ability to manufacture, manipulate, and measure quantum states

# **What is Topological Quantum Computation?**



## **Definition** [Freedman, Kitaev, Larsen, Wang '03]

Topological Quantum Computation is any computational model based upon the theoretical ability to manufacture, manipulate, and measure quantum states with topological phases of matter.

# **Topological Quantum Field Theories**



## **Definition** [Nayak, et al '08]

A topological phase of a matter (TPM) is a physical system such that its low-energy effective field theory\* is described by a TQFT.

## **Definition** [Witten, et al '88]

A topological quantum field theory (TQFT) is quantum mechanical model where "amplitudes only depend on the topology of the process".

<sup>\*&</sup>quot;...system is away from any boundary and has low energy and temperature."

## **Example: Two-Dimensional Electron Gas**





- These things exist! (e.g. GaAs, α-RuCl<sub>3</sub>)
- There is theoretical (and some experimental) evidence that you can perform quantum computation with some of these phases.
- Nobel prizes: experimental (1985, 1998) and theoretical (2016).

# **Computational Model**





- · Gates are given by unitary representations of the braid group.
- Computation is topologically protected from decoherence.

## **Mathematical Structure**



The appropriate mathematical structure is a modular category.



Morally, a classification of modular categories gives you a classification of topological phases.

# **Categories**

# Representation Category of a Group



# Rep(G)

#### Basic properties:

- $(\operatorname{Rep}(G), \oplus, \otimes, *)$
- $Hom^G(\rho, \varphi)$  is a finite dimentional vector space
- $|Irr(G)| < \infty$
- $\phi = \bigoplus_k \alpha_k \psi_k$ ,  $\psi_k \in Irr(G)$



#### **Definition**

- Abelian Monodial Category  $(\mathcal{C}, \oplus, \otimes)$
- $\mathbb{C}$ -linear: Hom(X, Y) is a finite dimensional vector space
- finite rank: Finite number of simple classes  $\{X_0 = 1, X_1, ..., X_n\}$
- semisimple:  $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X\* makes sense
- $X \otimes Y \cong Y \otimes X$
- $X^{**} \cong X$  and  $Tr_{\mathcal{C}}$



#### **Definition**

- Abelian Monodial Category  $(\mathcal{C}, \oplus, \otimes)$
- $\mathbb{C}$ -linear: Hom(X, Y) is a finite dimensional vector space
- finite rank: Finite number of simple classes  $\{X_0 = 1, X_1, ..., X_n\}$
- semisimple:  $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X\* makes sence
- $X \otimes Y \cong Y \otimes X$
- $X^{**} \cong X$  and  $Tr_C$



#### **Definition**

- Abelian Monodial Category  $(\mathcal{C}, \oplus, \otimes)$
- $\mathbb{C}$ -linear: Hom(X, Y) is a finite dimensional vector space
- finite rank: Finite number of simple classes  $\{X_0 = 1, X_1, ..., X_n\}$
- semisimple:  $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X\* makes sence
- $X \otimes Y \cong Y \otimes X$
- $X^{**} \cong X$  and  $Tr_C$



#### **Definition**

- Abelian Monodial Category  $(\mathcal{C}, \oplus, \otimes)$
- $\mathbb{C}$ -linear: Hom(X, Y) is a finite dimensional vector space
- finite rank: Finite number of simple classes  $\{X_0 = 1, X_1, ..., X_n\}$
- semisimple:  $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X\* makes sence
- $X \otimes Y \cong Y \otimes X$
- $X^{**} \cong X$  and  $Tr_{\mathcal{C}}$



#### **Definition**

A Premodular category is a spherical, braided, fusion category.

- Abelian Monodial Category  $(C, \oplus, \otimes)$
- $\mathbb{C}$ -linear: Hom(X, Y) is a finite dimensional vector space
- finite rank: Finite number of simple classes  $\{X_0 = 1, X_1, ..., X_n\}$
- semisimple:  $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X\* makes sence
- $X \otimes Y \cong Y \otimes X$
- $X^{**} \cong X$  and  $Tr_{\mathcal{C}}$

Key Diference: Elements of C have no internal structure.

## **Categorical Data**



These set of axioms give rise to data that is an invariant for categories,

- $S = (s_{XY})$
- $\theta_X = \text{root of unity [Vafa '88]}$

#### **Definition**

If C is premodular and  $Det(S) \neq 0$ , we say C is a modular category.

# **Mathematical Importance of Fusion Categories**



We can think of the theory of fusion categories as an extension of representation theory:

## **Theorem** [Deligne, Milne '82]

Rep(G), regarded as a fusion category, uniquely determines the group G up to isomorphism.

# **Mathematical Importance of Fusion Categories**



We can think of the theory of fusion categories as an extension of representation theory:

## **Theorem** [Deligne, Milne '82]

 $\operatorname{Rep}(G)$ , regarded as a symmetric fusion category, uniquely determines the group G up to isomorphism.

• 
$$Rank(S) = 1$$

# **Mathematical Importance of Fusion Categories**



We can think of the theory of fusion categories as an extension of representation theory:

## **Theorem** [Deligne, Milne '82]

Rep(G), regarded as a symmetric fusion category, uniquely determines the group G up to isomorphism.

• 
$$Rank(S) = 1$$

#### Remark

You get modular categories from von Neumann Algebras, vertex operator algebras, Hopf algebras, and Quantum Groups.

# Physical meaning of Categorical data



| Categorical Data | Anyonic System                |
|------------------|-------------------------------|
| 1                | Vacuum state                  |
| $X_i$            | Particle type                 |
| $X_i^*$          | Antiparticle                  |
| $\theta_X$       | Particle statistics           |
| $Det(S) \neq 0$  | Particles are distinguishable |
| Rank(S) = 1      | Particles exchange is boring  |

## **Connections to Quantum Information**



#### **Definition**

For  $X \in Irr(C)$ , we define  $d_X := Tr_C(Id_X)$  to be the quantum dimension of X.

## Conjeture [Naidu, Rowell '11]

X gives rise to a universal gate set (via particle exchange)  $\iff d_X^2 \notin \mathbb{Z}$ 

# Classification by Rank

# Classification by rank



## **Theorem** [Bruillard, Ng, Rowell, Wang '13]

There are finitely many modular categories of a given rank r.

Complete classification up to rank 5.

## Conjeture

There are finitely many premodular categories of a given rank r.

Complete clasification up to rank 4 [Bruillard].

# Classification by rank



## **Theorem** [Bruillard, Ng, Rowell, Wang '13]

There are finitely many modular categories of a given rank r.

Complete classification up to rank 5.

## Conjeture

There are finitely many premodular categories of a given rank r.

Complete clasification up to rank 4 5 [Bruillard, O].



#### On ArXiv:

P. Bruillard, *Rank 4 premodular categories*P. Bruillard, C. Ortiz, *Rank 5 premodular categories* (coming soon...)

## Thanks!