Embezzlement of entanglement Approx violation of conservation laws \& Entanglement in nonlocal games

Debbie Leung ${ }^{1}$ w/ Ben Toner², John Watrous ${ }^{1}$ (0804.4118) w/ Jesse Wang ${ }^{3}$ (1311.6842 + ongoing work)

Built on initial results by van Dam \& Hayden (0201041)
QMATH13, Georgia Tech, Oct 09, 2016.
${ }^{1}$ U Waterloo ${ }^{2}$ CWI/BQP Sol'n ${ }^{3}$ Cambridge $\$$ NSERC, CRC, CIFAR

Plan:

- Quantum mechanics notations
- Locality and correlations
- Schmidt decomposition and entanglement
- Embezzling of entanglement by reordering Schmidt coeffs
- Embezzling of entanglement by superposing different \# of entangled states
- Violating conservation law by superposing different \# of conserved quantities
- Limitations to embezzlement
- Nonlocal games that cannot be won with finite amount of entanglement

QM101 (notations)

Symbol / Concept

1. System (d-dim)
2. State

What it is
C^{d}
vector $|\psi\rangle \in \mathrm{C}^{d}$

QM101 (notations)

Symbol / Concept

1. System (d-dim)
2. State
3. |i>

What it is
C^{d}
vector $|\psi\rangle \in C^{d}$
$e_{i}=\left(\begin{array}{c}0 \\ \vdots \\ 1\end{array}\right] i^{\text {th }}$ entry

QM101 (notations)

Symbol / Concept

1. System (d-dim)
2. State
3. |i>
4. $\{|i\rangle\}_{i=1}{ }^{d}$

What it is
C^{d}
vector $|\psi\rangle \in \mathrm{C}^{d}$
$e_{i}=\left(\begin{array}{c}0 \\ \vdots \\ 1\end{array}\right) \longleftarrow i^{\text {th }}$ entry
0

Basis for C^{d}
(Computation basis)

QM101 (notations)

Symbol / Concept

1. System (d-dim)
2. State
3. |i>

What it is
C^{d}
vector $|\psi\rangle \in \mathrm{C}^{d}$
$e_{i}=\left(\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right) \longleftarrow i^{\text {th }}$ entry
4. $\{|i\rangle\}_{i=1}{ }^{d}$
e.g. $|\psi\rangle=\sum_{i} \alpha_{i}|i\rangle$,
$\sum_{i}\left|\alpha_{i}\right|^{2}=1$ $\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ : \\ \alpha_{d}\end{array}\right) \quad$ Basis for C^{d}

QM101 (notations)

Symbol / Concept
5. An operation applied to the sys

What it is

Isometries U
applied to the vector

QM101 (notations)

Symbol / Concept
5. An operation applied to the sys
6. A measurement along comp basis

What it is

Isometries U
applied to the vector

$$
\begin{aligned}
& \mathrm{f}: \mathrm{C}^{\mathrm{d}} \rightarrow \Delta^{\mathrm{d}} \\
& \qquad \sum_{\mathrm{i}} \alpha_{\mathrm{i}}|\mathrm{i}\rangle \mapsto\left(\left|\alpha_{1}\right|^{2},\left|\alpha_{2}\right|^{2}, \ldots\left|\alpha_{\mathrm{d}}\right|^{2}\right)
\end{aligned}
$$

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
What it is

$$
\mathrm{C}^{\mathrm{dA} A B} \approx \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}
$$

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
2. $|\mathrm{ij}\rangle=|\mathrm{i}\rangle|\mathrm{j}\rangle$

What it is
$\mathrm{C}^{\mathrm{dAdB}} \approx \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}$
$|i\rangle \otimes|j\rangle$

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
2. $|\mathrm{ij}\rangle=|\mathrm{i}\rangle|\mathrm{j}\rangle$
3. $\{|i j\rangle\}$

What it is
$\mathrm{C}^{\mathrm{dAdB}} \approx \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}$
$|i\rangle \otimes|j\rangle$
Tensor product basis

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
2. $|\mathrm{ij}\rangle=|\mathrm{i}\rangle|\mathrm{j}\rangle$
3. $\{|i j\rangle\}$
4. Local operation

What it is
$\mathrm{C}^{\mathrm{dAdB}} \approx \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}$
$|i\rangle \otimes|j\rangle$
Tensor product basis
$U_{A} \otimes V_{B}$

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
2. $|\mathrm{ij}\rangle=|\mathrm{i}\rangle|\mathrm{j}\rangle$
3. $\{|i j\rangle\}$
4. Local operation
5. Product states

What it is

```
CdAdB}\approx\mp@subsup{C}{}{dA}\otimes\mp@subsup{C}{}{dB
```

$|i\rangle \otimes|j\rangle$
Tensor product basis
$U_{A} \otimes V_{B}$
e.g. $|i\rangle|j\rangle$
e.g. $\left(\sum_{i} \alpha_{i}|i\rangle\right) \otimes\left(\sum_{j} \beta_{j}|j\rangle\right)$

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
2. $|\mathrm{ij}\rangle=|\mathrm{i}\rangle|\mathrm{j}\rangle$
3. $\{|i j\rangle\}$
4. Local operation
5. Product states

$$
\text { e.g. }\left(\sum_{i} \alpha_{i}|i\rangle\right) \otimes\left(\sum_{j} \beta_{j}|j\rangle\right)
$$

- 2 measurements applied separately to the two sys result in independent outcomes (no mutual information)
- holds with any local operation applied before the meas

QM201 (locality and correlations)

Symbol / Concept

1. Parties

Alice \& Bob
2. $|\mathrm{ij}\rangle=|\mathrm{i}\rangle|\mathrm{j}\rangle$
3. $\{|i j\rangle\}$
4. Local operation
5. Product states
6. Entangled states

- completely correlated measurement outcomes

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}{ }^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}{ }^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Pf: express $|\psi\rangle$ as $\sum_{\mathrm{ij}} \gamma_{\mathrm{ij}}|\mathrm{i}\rangle|\mathrm{j}\rangle$ and take the singular value decomposition of $\left[\gamma_{i j}\right]=U^{\top} \mathrm{D} V$ where D is diagonal with diagonal entries $\left\{\alpha_{k}\right\}$.

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}{ }^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Pf: express $|\psi\rangle$ as $\sum_{\mathrm{ij}} \gamma_{\mathrm{ij}}|\mathrm{i}\rangle|\mathrm{j}\rangle$ and take the singular value decomposition of $\left[\gamma_{i j}\right]=U^{\top} \mathrm{D} V$ where D is diagonal with diagonal entries $\left\{\alpha_{k}\right\}$.

The $\left\{\alpha_{k}\right\}$'s are called the Schmidt coefficients of $|\psi\rangle$.
The Schmidt rank of $|\psi\rangle=$ \# nonzero Schmidt coeffs.

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Pf: express $|\psi\rangle$ as $\sum_{\mathrm{ij}} \gamma_{\mathrm{ij}}|\mathrm{i}\rangle|\mathrm{j}\rangle$ and take the singular value decomposition of $\left[\gamma_{i j}\right]=U^{\top} \mathrm{D} V$ where D is diagonal with diagonal entries $\left\{\alpha_{k}\right\}$.

The $\left\{\alpha_{k}\right\}$'s are called the Schmidt coefficients of $|\psi\rangle$.
The Schmidt rank of $|\psi\rangle=$ \# nonzero Schmidt coeffs.

Obs 1: Local operations leave the Schmidt coeffs invariant
Obs 2: Conversely, if $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ have the same set of Schmidt coeffs, then, $\left|\psi_{1}\right\rangle=\mathrm{U} \otimes \mathrm{V}\left|\psi_{2}\right\rangle$ for some isometries U, V.

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}{ }^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Relation to entanglement:

1. $|\psi\rangle$ entangled iff Schmidt rank ≥ 2.
2. "Amount" of entanglement $\mathrm{E}(|\psi\rangle)$
$=$ entropy of $\left\{\left|\alpha_{k}\right|^{2}\right\}=-\sum_{k}\left|\alpha_{k}\right|^{2} \log \left|\alpha_{k}\right|^{2}$ (conserved)

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}{ }^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Relation to entanglement:

1. $|\psi\rangle$ entangled iff Schmidt rank ≥ 2.
2. "Amount" of entanglement $\mathrm{E}(|\psi\rangle)$
$=$ entropy of $\left\{\left|\alpha_{k}\right|^{2}\right\}=-\sum_{k}\left|\alpha_{k}\right|^{2} \log \left|\alpha_{k}\right|^{2}$ (conserved)
In particular, $|00\rangle_{A^{\prime} B^{\prime}} \nmid|\phi\rangle_{A^{\prime} B^{\prime}}$ where $|\phi\rangle=a|00\rangle+b|11\rangle, a, b \neq 0$.

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Relation to entanglement:

1. $|\psi\rangle$ entangled iff Schmidt rank ≥ 2.
2. "Amount" of entanglement $\mathrm{E}(|\psi\rangle)$
$=$ entropy of $\left\{\left|\alpha_{k}\right|^{2}\right\}=-\sum_{k}\left|\alpha_{k}\right|^{2} \log \left|\alpha_{k}\right|^{2}$ (conserved)
In particular, $|00\rangle_{A^{\prime} B^{\prime}} \nLeftarrow|\phi\rangle_{A^{\prime} B^{\prime}}$ where $|\phi\rangle=\mathrm{a}|00\rangle+\mathrm{b}|11\rangle, \mathrm{a}, \mathrm{b} \neq 0$.
Not even with a catalyst: $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \psi|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$

Schmidt decomposition

Theorem. Let $|\psi\rangle \in \mathrm{C}^{\mathrm{dA}} \otimes \mathrm{C}^{\mathrm{dB}}, \mathrm{N}=\mathrm{d}_{\mathrm{A}} \leq \mathrm{d}_{\mathrm{B}}$
Then, $\exists \mathrm{U}, \mathrm{V}$ s.t. $|\psi\rangle=\sum_{\mathrm{k}=1}^{\mathrm{N}} \alpha_{\mathrm{k}}(\mathrm{U}|\mathrm{k}\rangle) \otimes(\mathrm{V}|\mathrm{k}\rangle)$.

Relation to entanglement:

1. $|\psi\rangle$ entangled iff Schmidt rank ≥ 2.
2. "Amount" of entanglement $\mathrm{E}(|\psi\rangle)$
$=$ entropy of $\left\{\left|\alpha_{k}\right|^{2}\right\}=-\sum_{k}\left|\alpha_{k}\right|^{2} \log \left|\alpha_{k}\right|^{2}$ (conserved)
In particular, $|00\rangle_{A^{\prime} B^{\prime}} \nLeftarrow|\phi\rangle_{A^{\prime} B^{\prime}}$ where $|\phi\rangle=\mathrm{a}|00\rangle+\mathrm{b}|11\rangle, \mathrm{a}, \mathrm{b} \neq 0$.
Not even with a catalyst: $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \psi|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$

	α_{1}	$\mathrm{a} \alpha_{1}$	$\mathrm{~b} \alpha_{1}$
Schmidt	α_{2}	$\mathrm{a} \alpha_{2}$	$\mathrm{~b} \alpha_{2}$
coeffs	$:$	$:$	$:$
	α_{N}	$\mathrm{a} \alpha_{N}$	$\mathrm{~b} \alpha_{N}$

Schmidt coeffs when Alice and Bob hold multiple systems:

If $|\psi\rangle_{A B}=\sum_{k} \alpha_{k}|k\rangle_{A}|k\rangle_{B}$
then $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}}=\sum_{k} \alpha_{k}|\mathrm{k} 0\rangle_{A^{\prime}}|\mathrm{k} 0\rangle_{\mathrm{BB}^{\prime}}$
Schmidt coeffs: $\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}$
If $|\phi\rangle=a|00\rangle+b|11\rangle$
then $|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}=\sum_{\mathrm{k}} \mathrm{a} \alpha_{\mathrm{k}}|\mathrm{k} 0\rangle_{\mathrm{AA}^{\prime}}|\mathrm{k} 0\rangle_{\mathrm{BB}^{\prime}}+\mathrm{b} \alpha_{\mathrm{k}}|\mathrm{k} 1\rangle_{\mathrm{AA}^{\prime}}|\mathrm{k} 1\rangle_{\mathrm{BB}^{\prime}}$
Schmidt coeffs: $a \alpha_{1}, a \alpha_{2}, \ldots a \alpha_{N}, b \alpha_{1}, \ldots b \alpha_{N}$

Octave demonstration with $\alpha_{k} \propto 1 / \sqrt{ } \mathrm{k}$.
$\mathrm{N}=8$;
α_{1} through α_{8} :
$\begin{array}{llllllll}0.607 & 0.429 & 0.350 & 0.303 & 0.271 & 0.248 & 0.229 & 0.214\end{array}$
$a=0.8 ; b=0.6 ;$
a α_{1} through a $\alpha_{8} \mathrm{~b} \alpha_{1}$ through $\mathrm{b} \alpha_{8}$:

0.485	0.343	0.280	0.243	0.217	0.198	0.183	0.172
0.364	0.257	0.210	0.182	0.163	0.149	0.138	0.129

sorting the above:

$$
\begin{array}{llllllll}
0.485 & 0.364 & 0.343 & 0.280 & 0.257 & 0.243 & 0.217 & 0.210 \\
0.198 & 0.183 & 0.182 & 0.172 & 0.163 & 0.149 & 0.138 & 0.129
\end{array}
$$

overlap of above with α_{1} through $\alpha_{8}: 0.88030$

Octave demonstration with $\alpha_{\mathrm{k}} \propto 1 / \sqrt{ } \mathrm{k}$.
$\mathrm{N}=8$;
α_{1} through α_{8} :
$\begin{array}{llllllll}0.607 & 0.429 & 0.350 & 0.303 & 0.271 & 0.248 & 0.229 & 0.214\end{array}$
$a=0.8 ; b=0.6 ;$
a α_{1} through a $\alpha_{8} \mathrm{~b} \alpha_{1}$ through $\mathrm{b} \alpha_{8}$:

0.485	0.343	0.280	0.243	0.217	0.198	0.183	0.172
0.364	0.257	0.210	0.182	0.163	0.149	0.138	0.129

sorting the above:

$$
\begin{array}{llllllll}
0.485 & 0.364 & 0.343 & 0.280 & 0.257 & 0.243 & 0.217 & 0.210 \\
0.198 & 0.183 & 0.182 & 0.172 & 0.163 & 0.149 & 0.138 & 0.129
\end{array}
$$

overlap of above with α_{1} through $\alpha_{8}: 0.88030$
$\mathrm{N}=20$; overlap $=0.90500$
$\mathrm{N}=45$; overlap $=0.92070$
$\mathrm{N}=300$; overlap $=0.94378$

overlap or fidelity

Embezzlement of entanglement (I)
Theorem.

$$
\begin{aligned}
\text { em. } & \forall \varepsilon>0, \forall d, \forall|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d} \\
& \exists N, \exists|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \exists U, V \\
\text { s.t. } & \left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}!
\end{aligned}
$$

(while $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \nLeftarrow|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$)

Embezzlement of entanglement (I)
Theorem. $\forall \varepsilon>0, \forall d, \forall|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d}$

$$
\begin{aligned}
& \exists N, \exists|\psi\rangle_{\mathrm{AB}} \in C^{N} \otimes C^{N}, \exists U, V \\
& \text { s.t. }\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}! \\
& \text { i.e. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon
\end{aligned}
$$

(while $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \nLeftarrow|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$)

Embezzlement of entanglement (I)

Theorem. $\forall \varepsilon>0, \forall d, \forall|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d}$

$$
\begin{aligned}
& \quad \exists N, \exists|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \exists U, V \\
& \text { s.t. }\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}! \\
& \text { i.e. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon
\end{aligned}
$$

(while $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \nLeftarrow|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$)
van Dam \& Hayden (0201041)

- conceived such possibility !!
- proved the stronger, universal case where the same $|\psi\rangle$ works for all $|\phi\rangle$ (exchanging the red \& blue quantifiers)
- relies heavily on the Schmidt decompositions for the bipartite setting

Embezzlement of entanglement (II)

Goal: $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$!

2nd method / interpretation:

Embezzlement of entanglement (II)

Goal: $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$!
2nd method / interpretation:

1. Choose $A=A_{1} \ldots A_{n}, B=B_{1} \ldots B_{n}, \operatorname{dim}\left(A_{i}\right)=\operatorname{dim}\left(B_{i}\right)=d$

$$
|\psi\rangle_{A B}=C \sum_{r=1}^{n-1}|00\rangle_{A 1 B 1}|00\rangle_{A 2 B 2} \cdots|00\rangle_{A r B r}|\phi\rangle_{A r+1 B r+1} \cdots|\phi\rangle_{A n B n}
$$

Embezzlement of entanglement (II)

Goal: $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$!
2nd method / interpretation:

1. Choose $A=A_{1} \ldots A_{n}, B=B_{1} \ldots B_{n}, \operatorname{dim}\left(A_{i}\right)=\operatorname{dim}\left(B_{i}\right)=d$

$$
\begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{\mathrm{r}=1^{\mathrm{n}-1}}|00\rangle_{\mathrm{A} 1 \mathrm{~B} 1}|00\rangle_{\mathrm{A} 2 \mathrm{~B} 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}} \\
& =C \sum_{\mathrm{r}=1^{\mathrm{n}-1}}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}
\end{aligned}
$$

Embezzlement of entanglement (II)

Goal: $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$!
2nd method / interpretation:

1. Choose $A=A_{1} \ldots A_{n}, B=B_{1} \ldots B_{n}, \operatorname{dim}\left(A_{i}\right)=\operatorname{dim}\left(B_{i}\right)=d$

$$
\begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{r=1}^{n-1}|00\rangle_{\mathrm{A} 1 \mathrm{~B} 1}|00\rangle_{\mathrm{A} 2 \mathrm{~B} 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}} \\
& =C \sum_{\mathrm{r}=1}^{\mathrm{n}-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}
\end{aligned}
$$

2. Choose $U_{A^{\prime}}$ as:
$U\left|i_{1}\right\rangle_{A_{1}}\left|i_{2}\right\rangle_{A 2} \ldots\left|i_{n}\right\rangle_{A n}|i\rangle_{A^{\prime}}$
$=|i\rangle_{A 1}\left|i_{1}\right\rangle_{A 2} \ldots\left|i_{n-1}\right\rangle_{A n}\left|i_{n}\right\rangle_{A^{\prime}}$
i.e. U permutes the systems cyclicly.

Embezzlement of entanglement (II)

Goal: $\left(\mathrm{U}_{\mathrm{AA}} \otimes \otimes \mathrm{V}_{\mathrm{B} B^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$!
2nd method / interpretation:

1. Choose $A=A_{1} \ldots A_{n}, B=B_{1} \ldots B_{n}, \operatorname{dim}\left(A_{i}\right)=\operatorname{dim}\left(B_{i}\right)=d$

$$
\begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{r=1^{n-1}}|00\rangle_{\mathrm{A} 1 \mathrm{~B} 1}|00\rangle_{\mathrm{A} 2 \mathrm{~B} 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}} \\
& =C \sum_{\mathrm{r}=1^{\mathrm{n}-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}}
\end{aligned}
$$

2. Choose $U_{A^{\prime}}$ as:
$U\left|i_{1}\right\rangle_{A_{1}}\left|i_{2}\right\rangle_{A 2} \ldots\left|i_{n}\right\rangle_{A n}|i\rangle_{A^{\prime}}$
$=|i\rangle_{A 1}\left|i_{1}\right\rangle_{A 2} \cdots\left|i_{n-1}\right\rangle_{A n}\left|i_{n}\right\rangle_{A^{\prime}}$
i.e. U permutes the systems cyclicly.

3. V_{BB} acts similarly.

Embezzlement of entanglement (II)

Goal: $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$!

2nd method / interpretation:

$$
\text { 1. } \begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{r=1}^{n-1}|00\rangle_{\mathrm{A} 1 B 1}|00\rangle_{\mathrm{A} 2 B 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}} \\
& =C \sum_{r=1}^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-\mathrm{r}}
\end{aligned}
$$

Embezzlement of entanglement (II)

Goal: $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$!
2nd method / interpretation:

$$
\begin{aligned}
& \text { 1. }|\psi\rangle_{\mathrm{AB}}=\mathrm{C} \sum_{\mathrm{r}=1}{ }^{\mathrm{n}-1}|00\rangle_{\mathrm{A} 1 B 1}|00\rangle_{\mathrm{A} 2 B 2} \ldots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \ldots|\phi\rangle_{\mathrm{AnBn}} \\
& =C \sum_{r=1}{ }^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r} \\
& \text { 2. }\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \\
& =\left(U_{A A^{\prime}} \otimes V_{B B}\right) C \sum_{r=1}{ }^{n-1}|00\rangle_{A 1 B 1}|00\rangle_{A 2 B 2} \cdot .|00\rangle_{A r B r}|\phi\rangle_{A r+1 B r+1} \cdot \cdot|\phi\rangle_{A n B n}|00\rangle_{A^{\prime} B^{\prime}}
\end{aligned}
$$

Embezzlement of entanglement (II)

Goal: $\left(\mathrm{U}_{\mathrm{AA}} \otimes \otimes \mathrm{V}_{\mathrm{B} B^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$!
2nd method / interpretation:

$$
\text { 1. } \begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{\mathrm{r}=1^{n-1}|00\rangle_{\mathrm{A} 1 B 1}|00\rangle_{\mathrm{A} 2 B 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}}} \\
& =C \sum_{r=1}^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-\mathrm{r}}
\end{aligned}
$$

2. $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}}$

$$
\begin{aligned}
=\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) C \sum_{r=1}^{n-1}|00\rangle_{A 1 B 1}|00\rangle_{A 2 B 2} \cdot .|00\rangle_{A r B r}|\phi\rangle_{A r+1 B r+1} \cdot \cdot|\phi\rangle_{A n B n}|00\rangle_{A^{\prime} B^{\prime}} \\
=C \sum_{r=1}{ }^{n-1}|00\rangle_{A 1 B 1}|00\rangle_{A 2 B 2} \cdots|00\rangle_{A r B r}|00\rangle_{A r+1 B r+1} \cdots|\phi\rangle_{A n B n}|\phi\rangle_{A^{\prime} B^{\prime}}
\end{aligned}
$$

Embezzlement of entanglement (II)

Goal: $\left(\mathrm{U}_{\mathrm{AA}} \otimes \otimes \mathrm{V}_{\mathrm{B} B^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$!
2nd method / interpretation:

$$
\text { 1. } \begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{\mathrm{r}=1^{n-1}|00\rangle_{\mathrm{A} 1 B 1}|00\rangle_{\mathrm{A} 2 B 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}}} \\
& =C \sum_{r=1}^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-\mathrm{r}}
\end{aligned}
$$

2. $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}}$

$$
\begin{aligned}
& \left.=\left(U_{A A^{\prime}} \otimes V_{B B}\right) C \sum_{r=1}{ }^{n-1}|00\rangle_{A 1 B 1} 100\right\rangle_{A 2 B 2} \cdot .|00\rangle_{A r B r}|\phi\rangle_{A r+1 B r+1} \cdot \cdot|\phi\rangle_{A n B n}|00\rangle_{A^{\prime} B^{\prime}} \\
& =C \sum_{r=1}{ }^{n-1}|00\rangle_{A 1 B 1}|00\rangle_{A 2 B 2} \cdots|00\rangle_{A r B r}|00\rangle_{A r+1 B r+1} \ldots|\phi\rangle_{A n B n}|\phi\rangle_{A^{\prime} B^{\prime}}
\end{aligned}
$$

Embezzlement of entanglement (II)

Goal: $\left(\mathrm{U}_{\mathrm{AA}} \otimes \otimes \mathrm{V}_{\mathrm{B} B^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$!
2nd method / interpretation:

$$
\text { 1. } \begin{aligned}
|\psi\rangle_{\mathrm{AB}} & =C \sum_{\mathrm{r}=1^{n-1}|00\rangle_{\mathrm{A} 1 B 1}|00\rangle_{\mathrm{A} 2 B 2} \cdots|00\rangle_{\mathrm{ArBr}}|\phi\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \cdots|\phi\rangle_{\mathrm{AnBn}}} \\
& =C \sum_{r=1}^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-\mathrm{r}}
\end{aligned}
$$

2. $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}}$

$$
\begin{aligned}
& \left.=\left(U_{A A^{\prime}} \otimes V_{B B}\right) C \sum_{r=1}{ }^{n-1}|00\rangle_{A 1 B 1} 100\right\rangle_{A 2 B 2} \cdot .|00\rangle_{A r B r}|\phi\rangle_{A r+1 B r+1} \cdot \cdot|\phi\rangle_{A n B n}|00\rangle_{A^{\prime} B^{\prime}} \\
& =C \sum_{r=1}^{n-1}|00\rangle_{A 1 B 1}|00\rangle_{A 2 B 2} \ldots|00\rangle_{\mathrm{ArBr}}|00\rangle_{\mathrm{Ar}+1 \mathrm{Br}+1} \ldots|\phi\rangle_{\mathrm{AnBn}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}
\end{aligned}
$$

$$
=\left(C \sum_{r=1}^{n-1}|00\rangle^{\otimes r+1}|\phi\rangle^{\otimes n-r-1}\right)_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}
$$

inner product with $|\psi\rangle_{A B}$ is $\geq 1-1 / n$
$\therefore n=1 / \varepsilon$ suffices.

Embezzlement of entanglement (II)

Achieves $\left(U_{A A^{\prime}} \otimes \mathrm{V}_{\mathrm{B}}{ }^{\prime}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}!$
Summary of 2nd method:

1. $|\psi\rangle_{A_{A B}}|00\rangle_{A^{\prime} B^{\prime}}=C \sum_{r=1}{ }^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}|00\rangle_{A^{\prime} B^{\prime}}$
2. $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B}=\left(C \sum_{r=1}^{n-1}|00\rangle^{\otimes r+1}|\phi\rangle^{\otimes n-r-1}\right)_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$

Note: U, V do not depend on $|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$.

Embezzlement of entanglement (II)

Achieves $\left(U_{A A^{\prime}} \otimes \mathrm{V}_{\mathrm{B}}{ }^{\prime}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}!$
Summary of 2nd method:

1. $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}}=C \sum_{r=1}{ }^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}|00\rangle_{A^{\prime} B^{\prime}}$
2. $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B}=\left(C \sum_{r=1}^{n-1}|00\rangle^{\otimes r+1}|\phi\rangle^{\otimes n-r-1}\right)_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$

Note: U, V do not depend on $|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$.
Extension 1: works for any m-party states_| $|\phi\rangle_{A^{\prime} B^{\prime}}$

Embezzlement of entanglement (II)

Achieves $\left(\mathrm{U}_{\mathrm{A}}{ }^{\prime} \otimes \mathrm{V}_{\mathrm{B}}{ }^{\prime}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{\mathrm{AB}}|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$!
Summary of 2nd method:

1. $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}}=C \sum_{r=1}{ }^{n-1}|00\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}|00\rangle_{A^{\prime} B^{\prime}}$
2. $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B}=\left(C \sum_{r=1}^{n-1}|00\rangle^{\otimes r+1}|\phi\rangle^{\otimes n-r-1}\right)_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$

Note: U, V do not depend on $|\phi\rangle_{\mathrm{A}^{\prime} B^{\prime}}$.
Extension 1: works for any m-party states_| $|\phi\rangle_{A^{\prime} B^{\prime}}$
Extension 2: works for any initial state not just $|00\rangle_{A^{\prime} B^{\prime}}$
So, $|\psi\rangle=$ C $\sum_{r=1}{ }^{n-1}|\eta\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}$ enables $|\psi\rangle_{A B}|\eta\rangle_{A^{\prime} B^{\prime}} \leftrightarrow|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$

Embezzlement of entanglement (II)

Achieves $\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right)|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \approx^{\varepsilon}|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}!$
Extension 3: Coherent state exchange,
i.e., embezzle / not in superposition

$$
\begin{aligned}
& \left(\mathrm{a}|00\rangle_{\mathrm{ACBC}}|\gamma\rangle_{A^{\prime} B^{\prime}}+\mathrm{b}|11\rangle_{\mathrm{AcBC}}|\eta\rangle_{A^{\prime} B^{\prime}}\right)|\psi\rangle_{\mathrm{AB}} \\
& \rightarrow\left(\mathrm{a}|00\rangle_{\mathrm{ACBC}}|\gamma\rangle_{\mathrm{A}^{\prime} B^{\prime}}+\mathrm{b}|11\rangle_{\mathrm{AcBC}}|\phi\rangle_{A^{\prime} B^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}
\end{aligned}
$$

systems that controls whether to embezzle or not

Extension 4 (approx violation of conservation laws)
Suppose operations are restricted and $|\eta\rangle \nLeftarrow|\phi\rangle$.
e.g., restricted to local operation, $|\eta\rangle=|00\rangle,|\phi\rangle=(|00\rangle+|11\rangle) / \sqrt{ } 2$

Extension 4 (approx violation of conservation laws)

Suppose operations are restricted and $|\eta\rangle \nLeftarrow|\phi\rangle$.
e.g., restricted to local operation, $|\eta\rangle=|00\rangle,|\phi\rangle=(|00\rangle+|11\rangle) / \sqrt{ } 2$
e.g., $|\eta\rangle$ and $|\phi\rangle$ contain different amount of a conserved quantity

Extension 4 (approx violation of conservation laws)

Suppose operations are restricted and $|\eta\rangle \nLeftarrow|\phi\rangle$.
e.g., restricted to local operation, $|\eta\rangle=|00\rangle,|\phi\rangle=(|00\rangle+|11\rangle) / \sqrt{ } 2$
e.g., $|\eta\rangle$ and $|\phi\rangle$ contain different amount of a conserved quantity then $|\psi\rangle=C \sum_{r=1}{ }^{n-1}|\eta\rangle^{\otimes r}|\phi\rangle^{\otimes n-r}$ enables the approx transformation

$$
(\mathrm{a}|0\rangle|\gamma\rangle+\mathrm{b}|1\rangle|\eta\rangle)|\psi\rangle \leftrightarrow^{\varepsilon}(\mathrm{a}|0\rangle|\gamma\rangle+\mathrm{b}|1\rangle|\phi\rangle)|\psi\rangle
$$

(Applying method 2 conditioned on the control register being 1, note that conditioned permutation respect global conservation.)

Extension 5 (macroscopically-controlled q gates)
e.g., $|0\rangle_{\mathrm{s}},|1\rangle_{\mathrm{s}}$ correspond to spin down and up respectively.
$|1\rangle_{\mathrm{S}}$ is at a higher energy level than $|0\rangle_{\mathrm{S}}$.

Extension 5 (macroscopically-controlled q gates)
e.g., $|0\rangle_{S},|1\rangle_{S}$ correspond to spin down and up respectively.
$|1\rangle_{S}$ is at a higher energy level than $|0\rangle_{S}$.
Want the "X gate": a $|0\rangle_{S}+b|1\rangle_{S} \leftrightarrow a|1\rangle_{S}+b|0\rangle_{S}$ but $\quad|0\rangle_{S} \leftrightarrow|1\rangle_{S}$

Extension 5 (macroscopically-controlled q gates)
e.g., $|0\rangle_{S},|1\rangle_{S}$ correspond to spin down and up respectively.
$|1\rangle_{\mathrm{s}}$ is at a higher energy level than $|0\rangle_{\mathrm{s}}$.
Want the "X gate": a $|0\rangle_{\mathrm{S}}+\mathrm{b}|1\rangle_{\mathrm{S}} \leftrightarrow \mathrm{a}|1\rangle_{\mathrm{S}}+\mathrm{b}|0\rangle_{\mathrm{S}}$ but $\quad|0\rangle_{\mathrm{s}} \nLeftarrow|1\rangle_{\mathrm{s}}$
Allowed: $|r\rangle_{\mathrm{L}}|0\rangle_{\mathrm{S}} \leftrightarrow|r-1\rangle_{\mathrm{L}}|1\rangle_{\mathrm{S}}$
where $|k\rangle_{\llcorner }$represents k photos in a laser beam.

Extension 5 (macroscopically-controlled q gates)

e.g., $|0\rangle_{S},|1\rangle_{S}$ correspond to spin down and up respectively.
$|1\rangle_{\mathrm{S}}$ is at a higher energy level than $|0\rangle_{\mathrm{S}}$.
Want the "X gate": a $|0\rangle_{\mathrm{S}}+\mathrm{b}|1\rangle_{\mathrm{S}} \leftrightarrow \mathrm{a}|1\rangle_{\mathrm{S}}+\mathrm{b}|0\rangle_{\mathrm{S}}$ but $\quad|0\rangle_{\mathrm{S}} \leftrightarrow|1\rangle_{\mathrm{S}}$
Allowed: $|r\rangle_{\mathrm{L}}|0\rangle_{\mathrm{S}} \leftrightarrow|r-1\rangle_{\mathrm{L}}|1\rangle_{\mathrm{S}}$
where $|k\rangle_{L}$ represents k photos in a laser beam.
If one compares the photo number in the laser beam before and after the interaction, one can learn whether the spin system is in a up/down state, decohering the qubit.

Extension 5 (macroscopically-controlled q gates)

e.g., $|0\rangle_{S},|1\rangle_{S}$ correspond to spin down and up respectively.
$|1\rangle_{\mathrm{S}}$ is at a higher energy level than $|0\rangle_{\mathrm{S}}$.
Want the "X gate": a $|0\rangle_{\mathrm{S}}+\mathrm{b}|1\rangle_{\mathrm{S}} \leftrightarrow \mathrm{a}|1\rangle_{\mathrm{S}}+\mathrm{b}|0\rangle_{\mathrm{S}}$ but $\quad|0\rangle_{\mathrm{S}} \leftrightarrow|1\rangle_{\mathrm{S}}$
Allowed: $|r\rangle_{\mathrm{L}}|0\rangle_{\mathrm{S}} \leftrightarrow|r-1\rangle_{\mathrm{L}}|1\rangle_{\mathrm{S}}$
where $|k\rangle_{L}$ represents k photos in a laser beam.
If one compares the photo number in the laser beam before and after the interaction, one can learn whether the spin system is in a up/down state, decohering the qubit.
Idea: use $|\psi\rangle_{L}=\sum_{r=1}{ }^{n-1}|r\rangle_{L}$ so

$$
|\psi\rangle_{\mathrm{L}}\left(\mathrm{a}|0\rangle_{\mathrm{S}}+\mathrm{b}|1\rangle_{S}\right) \leftrightarrow \sum_{r=1}^{\mathrm{n}-1}|\mathrm{r}-1\rangle_{\mathrm{L}} \mathrm{a}|1\rangle_{\mathrm{S}}+\sum_{\mathrm{r}=1}^{\mathrm{n}-1}|\mathrm{r}+1\rangle_{\mathrm{L}} \mathrm{~b}|0\rangle_{\mathrm{S}}
$$

Extension 5 (macroscopically-controlled q gates)

e.g., $|0\rangle_{S},|1\rangle_{S}$ correspond to spin down and up respectively.
$|1\rangle_{\mathrm{S}}$ is at a higher energy level than $|0\rangle_{\mathrm{S}}$.
Want the "X gate": a $|0\rangle_{\mathrm{S}}+\mathrm{b}|1\rangle_{\mathrm{S}} \leftrightarrow \mathrm{a}|1\rangle_{\mathrm{S}}+\mathrm{b}|0\rangle_{\mathrm{S}}$ but $\quad|0\rangle_{\mathrm{S}} \leftrightarrow|1\rangle_{\mathrm{S}}$
Allowed: $|r\rangle_{\mathrm{L}}|0\rangle_{\mathrm{S}} \leftrightarrow|r-1\rangle_{\mathrm{L}}|1\rangle_{\mathrm{S}}$
where $|k\rangle_{L}$ represents k photos in a laser beam.
If one compares the photo number in the laser beam before and after the interaction, one can learn whether the spin system is in a up/down state, decohering the qubit.
Idea: use $|\psi\rangle_{L}=\sum_{r=1}{ }^{n-1}|r\rangle_{L}$ so

$$
|\psi\rangle_{\mathrm{L}}\left(\mathrm{a}|0\rangle_{\mathrm{S}}+\mathrm{b}|1\rangle_{\mathrm{S}}\right) \leftrightarrow \sum_{\mathrm{r}=1}^{\mathrm{n}-1}|\mathrm{r}-1\rangle_{\mathrm{L}} \mathrm{a}|1\rangle_{\mathrm{S}}+\sum_{\mathrm{r}=1}^{\mathrm{n}-1}|\mathrm{r}+1\rangle_{\mathrm{L}} \mathrm{~b}|0\rangle_{\mathrm{S}}
$$

both nearly indistinguishable from $|\psi\rangle_{\mathrm{L}}$ so X gate nearly coherent.

Limits to embezzlement of entanglement

Qualitative no-go theorem: $|\psi\rangle_{A B}|00\rangle_{A^{\prime} B^{\prime}} \nLeftarrow|\psi\rangle_{A B}|\phi\rangle_{A^{\prime} B^{\prime}}$
Embezzlement: $\forall \varepsilon>0, \forall d, \forall|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d}$
$\exists N, \exists|\psi\rangle_{\mathrm{AB}} \in C^{N} \otimes C^{N}, \exists U, V$
s.t. $\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon$

So No-go theorem is not robust or continuous enough.

Idea: obtain lower bound on ε as a function of N by continuity of von Neumann entropy.

Limits to embezzlement of entanglement

Theorem:

$$
\begin{aligned}
& \text { If } \varepsilon>0,|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d},|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \\
& \quad \text { and } \exists U, V \text { s.t. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon \\
& \text { then } \varepsilon \geq 8[E(|\phi\rangle) /(\log N+\log d)]^{2}
\end{aligned}
$$

Limits to embezzlement of entanglement

Theorem:

$$
\begin{aligned}
& \text { If } \varepsilon>0,|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d},|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \\
& \quad \text { and } \exists U, V \text { s.t. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon \\
& \text { then } \varepsilon \geq 8[E(|\phi\rangle) /(\log N+\log d)]^{2}
\end{aligned}
$$

$$
\text { Proof: Let }|\omega\rangle=\left(\mathrm{U}_{\mathrm{AA}^{\prime}} \otimes \mathrm{V}_{\mathrm{BB}^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}
$$

$$
\text { Then } 1-\varepsilon \leq\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}} \mid \omega\right\rangle_{A^{\prime} A^{\prime} B B^{\prime}}\right.
$$

Limits to embezzlement of entanglement

Theorem:

$$
\begin{aligned}
& \text { If } \varepsilon>0,|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d},|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \\
& \quad \text { and } \exists U, V \text { s.t. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon \\
& \text { then } \varepsilon \geq 8[E(|\phi\rangle) /(\log N+\log d)]^{2}
\end{aligned}
$$

$$
\text { Proof: Let }|\omega\rangle=\left(\mathrm{U}_{\mathrm{AA}^{\prime}} \otimes \mathrm{V}_{\mathrm{BB}^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}
$$

$$
\text { Then } 1-\varepsilon \leq\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}} \mid \omega\right\rangle_{A^{\prime} A^{\prime} B B^{\prime}}\right.
$$

$$
\Rightarrow 2 \sqrt{ } 2 \sqrt{ } \varepsilon
$$

by relating fidelity and trace distance between pure states

Limits to embezzlement of entanglement

Theorem:

$$
\begin{aligned}
& \text { If } \varepsilon>0,|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d},|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \\
& \quad \text { and } \exists U, V \text { s.t. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A^{\prime}} \otimes V_{B B}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon \\
& \text { then } \varepsilon \geq 8[E(|\phi\rangle) /(\log N+\log d)]^{2}
\end{aligned}
$$

$$
\text { Proof: Let }|\omega\rangle=\left(\mathrm{U}_{\mathrm{AA}^{\prime}} \otimes \mathrm{V}_{\mathrm{BB}^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}
$$

$$
\text { Then } 1-\varepsilon \leq\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}} \mid \omega\right\rangle_{A^{\prime} A^{\prime} B B^{\prime}}\right.
$$

$$
\Rightarrow 2 \sqrt{ } 2 \sqrt{ } \sqrt{ }
$$

monotonicity of trace distance under quantum operations

Limits to embezzlement of entanglement

Theorem:

$$
\begin{aligned}
& \text { If } \varepsilon>0,|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d},|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \\
& \quad \text { and } \exists U, V \text { s.t. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon \\
& \text { then } \varepsilon \geq 8[E(|\phi\rangle) /(\log N+\log d)]^{2}
\end{aligned}
$$

$$
\text { Proof: Let }|\omega\rangle=\left(\mathrm{U}_{\mathrm{AA}^{\prime}} \otimes \mathrm{V}_{\mathrm{BB}^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}
$$

$$
\text { Then } 1-\varepsilon \leq\left\langle\left.\psi\right|_{\mathrm{AB}}\left\langle\left.\phi\right|_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}} \mid \omega\right\rangle_{\mathrm{AA}^{\prime} B B^{\prime}}\right.
$$

$$
\Rightarrow 2 \sqrt{ } 2 \sqrt{ } \varepsilon
$$

$$
\geq\left|\mathrm { S } \left(\operatorname{tr}_{\mathrm{BB}^{\prime}}|\psi\rangle\left\langle\left.\psi\right|_{\mathrm{AB}} \otimes \mid \phi\right\rangle\left\langle\left.\phi\right|_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}\right)-\mathrm{S}\left(\operatorname{tr}_{\mathrm{BB}}| | \omega\right\rangle\left\langle\left.\omega\right|_{\mathrm{AA}^{\prime} B B^{\prime}}\right) \mid\right.\right.
$$

$$
\log N+\log d
$$

Fannes inequality for von Neumann entropy

Limits to embezzlement of entanglement

Theorem:

$$
\begin{aligned}
& \text { If } \varepsilon>0,|\phi\rangle_{A^{\prime} B^{\prime}} \in C^{d} \otimes C^{d},|\psi\rangle_{A B} \in C^{N} \otimes C^{N}, \\
& \quad \text { and } \exists U, V \text { s.t. }\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\left(U_{A^{\prime}} \otimes V_{B B^{\prime}}\right) \mid \psi\right\rangle_{A B} \mid 00\right\rangle_{A^{\prime} B^{\prime}} \geq 1-\varepsilon \\
& \text { then } \varepsilon \geq 8[E(|\phi\rangle) /(\log N+\log d)]^{2}
\end{aligned}
$$

$$
\text { Proof: Let }|\omega\rangle=\left(\mathrm{U}_{\mathrm{AA}^{\prime}} \otimes \mathrm{V}_{\mathrm{BB}^{\prime}}\right)|\psi\rangle_{\mathrm{AB}}|00\rangle_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}
$$

$$
\text { Then } 1-\varepsilon \leq\left\langle\left.\psi\right|_{A B}\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}} \mid \omega\right\rangle_{A^{\prime} A^{\prime} B B^{\prime}}\right.
$$

$$
\Rightarrow 2 \sqrt{ } 2 \sqrt{ } \varepsilon
$$

$$
\geq\left|\mathrm { S } \left(\operatorname{tr}_{\mathrm{BB}^{\prime}}|\psi\rangle\left\langle\left.\psi\right|_{\mathrm{AB}} \otimes \mid \phi\right\rangle\left\langle\left.\phi\right|_{A^{\prime} B^{\prime}}\right)-\mathrm{S}\left(\operatorname{tr}_{\mathrm{BB}^{\prime}}|\omega\rangle\left\langle\left.\omega\right|_{A^{\prime} B^{\prime} B^{\prime}}\right) \mid\right.\right.\right.
$$

$$
\log N+\log d
$$

$$
\geq E(|\phi\rangle) /(\log N+\log d)
$$

So, embezzlement (and coherent state exchange) can be approximated better and better with larger and larger local dimensions, but never possible exactly.

Applications to nonlocal games.

Nonlocal game:

Referee

Alice
Bob

Nonlocal game:

Nonlocal game:

$x, y \sim p_{x y}$
R_{xy} set of (a, b) that wins if x, y are inputs

Nonlocal game:

$x, y \sim p_{x y}$
$R_{x y}$ set of (a, b) that wins if x, y are inputs

Alice and Bob win if $(a, b) \in R_{x y}$
Value of the game $G=\omega(G)=$ max win probability

Nonlocal game:

$x, y \sim p_{x y}$
R_{xy} set of (a, b) that wins if x, y are inputs

Alice and Bob win if $(a, b) \in R_{x y}$
Value of the game $G=\omega(\mathrm{G})=$ max win probability
Entangled value of $G=\omega^{*}(G)=$ sup win probability if Alice and Bob share entanglement

Nonlocal game:

$x, y \sim p_{x y}$
$R_{x y}$ set of (a, b) that wins if x, y are inputs

Alice and Bob win if $(a, b) \in R_{x y}$
Value of the game $G=\omega(G)=$ max win probability
Entangled value of $\mathrm{G}=\omega^{*}(\mathrm{G})=$ sup win probability if Alice and Bob share entanglement

If $\omega^{*}(\mathrm{G})>\omega(\mathrm{G})$, the game corresponds to a Bell's inequality where x, y are measurement settings and a, b are outcomes.
e.g., $x, y, a, b \in\{0,1\},(a, b) \in R_{x y}$ iff $a b=x \oplus y$ corr to CHSH ineq

Nonlocal game:

$x, y \sim p_{x y}$
$R_{x y}$ set of (a, b) that wins if x, y are inputs

Alice and Bob win if $(a, b) \in R_{x y}$
Value of the game $G=\omega(G)=$ max win probability
Entangled value of $G=\omega^{*}(G)=$ sup win probability if Alice and Bob share entanglement

Qn: how much and what type of entanglement is needed to attain the supremum?

Nonlocal game:

$x, y \sim p_{x y}$
$R_{x y}$ set of (a, b) that wins if x, y are inputs

Alice and Bob win if $(a, b) \in R_{x y}$
Value of the game $G=\omega(G)=$ max win probability
Entangled value of $\mathrm{G}=\omega^{*}(\mathrm{G})=$ sup win probability if Alice and Bob share entanglement

Qn: how much and what type of entanglement is needed to attain the supremum?

Open if sup attained with finite dim if $x, y \in\{0,1,2\}, a, b \in\{0,1\}$

Quantum cooperative game:

Referee prepares a quantum state $|\xi\rangle_{X Y R}$, sends X to Alice and Y to Bob receives A from Alice and B from Bob measures ABR according to POVM $\left\{M_{w}, M_{1}\right\}$
Alice and Bob win if outcome is w.
Qn: does sharing entangled state $|\Psi\rangle$ increases the winning prob? how much and what entangled state are needed?

Game that cannot be won with finite entanglement:
$|\xi\rangle_{X Y R}=\frac{1}{\sqrt{ } 2}(|0\rangle|00\rangle+|1\rangle|\Phi\rangle)_{R X Y}$ where $|\Phi\rangle:=(|11\rangle+|22\rangle) / \sqrt{ } 2$
Let $|\gamma\rangle=\frac{1}{\sqrt{ } 2}(|000\rangle+|111\rangle)_{\text {RAB }}$, POVM: $M_{w}=|\gamma\rangle\langle\gamma|, M_{l}=I-M_{\text {acc }}$

Game that cannot be won with finite entanglement:
$|\xi\rangle_{X Y R}=\frac{1}{\sqrt{ } 2}(|0\rangle|00\rangle+|1\rangle|\Phi\rangle)_{R X Y}$ where $|\Phi\rangle:=(|11\rangle+|22\rangle) / \sqrt{ } 2$
Let $|\gamma\rangle=\frac{1}{\sqrt{ } 2}(|000\rangle+|111\rangle)_{\text {RAB }}$, POVM: $M_{w}=|\gamma\rangle\langle\gamma|, M_{1}=I-M_{\text {acc }}$
Then, with coherent state exchange, prob(win) increases with $\operatorname{dim}\left(E_{A, B}\right)$ but never reaches 1 .

Open problem 1

Now that we know there is no bound on the entanglement needed in the optimal prover strategy in general for quantum multi-prover interactive proof system
if we allow a small deviation from optimal, is there a bound on the amount of entanglement?

Simpler question: for cooperative games with fixed small (constant) system dimensions and ϵ, is there a universal (indep of game) upper bound on amt of entanglement that is sufficient to achieve accepting probability ϵ-close to optimal?

Open problem 2

The coherent state exchange protocol for 3 or more parties can be made universal (just like embezzlement of entanglement) but it is very inefficient. Is there a more efficient universal protocol?

