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Dynamical systems: a statistical approach

Completely integrable Chaotic
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In the chaotic case positions and directions get uniformly
distributed:

Typical questions:
How long do we have to wait to have uniform distribution?

Are there periodic orbits and what information to they contain?
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In the chaotic case positions and directions get uniformly
distributed:

Recent work on the rate of decay for billiards by
Baladi—-Demers—Liverani '15
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A dynamical analogue of the Riemann zeta function: Ruelle zeta
function

Replace primes with prime closed orbits in ((s) = [[,(1 — p~s) !

to(s) = [ - e

Y

Replace p by er where £, is the length of a prime closed orbit.

It turns out that the zeros and poles of {(p contain information
about statistical properties of the chaotic dynamical system.

That includes the time at which we achieve uniform distribution.



Dynamical zeta functions have been studied by many authors:

Selberg '56, Artin—-Mazur '65, Smale '67, Bowen—Lanford '68,
Ruelle '76, Milnor—Thurston '77, Parry—Pollicott '83,'90, Pollicott
'86, Cvitanovi¢—Eckhardt '91, Mayer, '91, Rugh '96, Fried '86, '95,
Kitaev '99, Petkov—Stoyanov '07, Baladi—Tsujii '08, Stoyanov '11,
Faure—Tsujii '13, Borthwick—Weich '15, ...
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Dynamical zeta functions have been studied by many authors:

Selberg '56, Artin—-Mazur '65, Smale '67, Bowen—Lanford '68,
Ruelle '76, Milnor—Thurston '77, Parry—Pollicott '83,'90, Pollicott
'86, Cvitanovi¢—Eckhardt '91, Mayer, '91, Rugh '96, Fried '86, '95,
Kitaev '99, Petkov—Stoyanov '07, Baladi—Tsujii '08, Stoyanov 11,
Faure—Tsujii '13, Borthwick—Weich '15, ...

Smale '67 conjectured that for Anosov flows (p is meromorphic in
C: "l must admit a positive answer would be a little shocking!”
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What is an Anosov flow?
T,X = Eo(p) @ Es(p) ® Eu(p), p+— Es(p) continuous,

doe(p)Ee(p) = Ee(i0t(p)),

|doe(P)V]p(py < Ce 8|V, v e Eup), t<O,

|d0e(p) V() < CeM|v],, v € Es(p), t>0.

Example: X = S*M :={(x,¢{) € T*M,; |§]§ =1}, where (M, g) is
a compact Riemannian manifold of negative curvature.
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Theorem (Giulietti-Liverani—Pollicott '12, Dyatlov—Z '13)

For an Anosov flow on a compact manifold (p(s) has a
meromorphic continuation to C.

Our proof uses the microlocal approach to Anosov flows due to
Faure-Sjostrand '11 and radial point propagation of singularities
estimates due to Melrose '94 and developed further by Vasy '13.

The noncompact case (essentially the full Smale conjecture)
recently completed by Dyatlov—Guillarmou.
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Special case:

Let (M, g) be a smooth oriented compact Riemannian surface of

negative curvature.

Cp(s) = H(l e st ), Res> 1.

Theorem (Dyatlov—Z '16)

Let g be the genus of M. Then s>~28(p(s) is holomorphic near
s =0 and

s*728(p(s)|s=0 # 0.

In particular, the set of lengths of closed orbits (the length
spectrum) determines the genus.



Pollicott-Ruelle Resonances



Pollicott-Ruelle Resonances

Correlations: f,g € C*(X),



Pollicott-Ruelle Resonances

Correlations: f,g € C®(X), e *Pf(x) = f(p_¢(x)),



Pollicott-Ruelle Resonances

Correlations: f,g € C®(X), e *Pf(x) = f(p_¢(x)),

pr g(t) = /X e P F(x)g (x) dx



Pollicott-Ruelle Resonances

Correlations: f,g € C®(X), e *Pf(x) = f(p_¢(x)),

pr g(t) = /X e P F(x)g (x) dx

Power spectrum:

pra)i= [ prs(t)ea



Pollicott-Ruelle Resonances

Correlations: f,g € C®(X), e *Pf(x) = f(p_¢(x)),

pr g(t) = /X e P F(x)g (x) dx

Power spectrum:

pra)i= [ prs(t)ea

Resonances: poles of pr g(\)
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Correlations: f,g € C®(X), e *Pf(x) = f(p_¢(x)),

pr g(t) = /X e P F(x)g (x) dx

Power spectrum:

pra)i= [ prs(t)ea

Resonances: poles of pr g(\)
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cycles/yr

Rough parameter dependence in climate models and the role of
Ruelle—Pollicott resonances,

Chekroun—Neelin—Kondrashov—McWilliams—Ghil, 2014
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prg(t) = /X e P F(x)g (x)dx

Pollicott—Ruelle resonances are the poles of pr 4 ().

m(\) :=dim{u e D'(X): (3V = A)'u=0, WF(u) C E;}
El = (E,® B)* Cc T*X.

Blank—Keller—Liverani’02 ... Faure-Sjostrand '11...

To obtain exponential decay of correlations one needs a gap:

vo = sup{v : no resonances for Im A > —v}

vy =sup{v : finite n*> of resonances for Im A > —v}

v1 > 0 for contact flows (and in particular for geodesic Anosov
flows): Dolgopyat'98, Liverani '04, Tsujii'l2, Nonnenmacher-Z'15.
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A “real” life investigation of the gap

Spectral RP-gap observed through the Nifio 3 index (&s = 0.1)

| Filtered RP resonances

0.91 0.92 0.93

0.94

0.95 0.96

Spectral RP-gap observed through the Nifio 3 index (65 = 0.95)
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Rough parameter dependence of the spectral gap in climate

models, Chekroun—Neelin—Kondrashov—McWilliams—Ghil,

2014.
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Microlocal analysis (semiclassical version)

Phase space: (x,§) € T*X

Semiclassical parameter: h — 0, the effective wavelength
Classical observables: a(x,§) € C*(T*X)

Quantization: Opj(a) = a(x, 7'.’8)() 1 C(X) — C>=(X),
semiclassical pseudodifferential operator

vV V. vy

Basic examples

» a(x,{) =x; = Opy(a) =x; multiplication operator
> a(x,&)=¢ = Opyla) = 20y

Classical-quantum correspondence
> [Opy(a), Opy(b)] = # Opy({a, b}) + O(H?)
> {a,b} = O¢a- Oxb— Oxa- Ogb = Hab, ets Hamiltonian flow
> Example: [Opy (&), Opy(x)] = 19
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Standard semiclassical estimates
General question
P =0py(p), Pu=f = || SIf]?
Control u microlocally:

10px(a)ull < [[Ops(b)ull + 1 Il

Elliptic estimate Propagation of singularities

{p=0}
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ueD(X) — WF(u)C T"X\0

(x,£) ¢ WF(u)
)
Ja € C®(T*X), a(x,€) #0, ||a(x, AD)ul|;» = O(h™)

Examples:
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Phase space description of singularities

ueD(X) — WF(u)C T"X\0

(x,£) ¢ WF(u)
)
Ja € C®(T*X), a(x,€) #0, ||a(x, AD)ul|;» = O(h™)

Examples:
> WF(do) = {(0,£) : £ € R"\ 0}
> WF((x —i0)™") = {(0,£) : £ > 0}
» WF(0(ax —y)) = {(x,ax; —an,n) : y € R, £ € R\ 0}
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Return to the Ruelle zeta function (with a slight change of
convention):

_ ey Gem—1(A ) (V) .
CD()\)—E[(l ') = om) G0 2m+1:=dim X.
e eimAZW tr /\kPm
Ck(A) = (— le mdet(/—pgj)\) ImA > 1.

m=1 v

Theorem (Dyatlov—Z '16)

Ck(X) extends to an entire function and the multiplicities of its
zeros are given by

dim {u eD'(X,Q8) : (2Ly —A)u=0, WF(u) C E;}

where Qé are k-forms satisfying tyyu = 0.
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The starting point for relating the zeta function to the
distributional spectrum of %EV is is the Atiyah—Bott—Guillemin
trace formula:

_/tP/h ZZ ‘/_,Pm‘ 7 P:h\//i.

m=1 ~y

This is related to the first building block of the zeta function:

o) = e - Zmeetmﬁwn)

/OO e—itP/hdt
0

) 0
ito\ *
e'to htrgo_tO(P—h)\) aloggo( ).

Since

(P—z)t=

> ~.
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Here the trace is a formal trace obtained by integration over the
diagonal:

Au(x) = /X Ka(x, y)uly)dy

trA::/ Ka(x, x)dx
X

Allowed under a wave front set condition

WF(Ka) N{(x,x;&,=&) : x € X, £ € T; X\ 0}=10

Example: Au(x) := u(ax), x € R, Ka(x,y) = d(ax — y)

trA—/Ré((a—l)x)—’a_lu, 2t 1
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Here the trace is a formal trace obtained by integration over the
diagonal:

Au(x) = [ Kaey)uy)ey
trA:= / Ka(x, x)dx
X
Allowed under a wave front set condition

WF(Ka) N{(x,x;&,=&) : x € X, £ € T; X\ 0}=10

Example: Au(x) := u(ax), x € R, Ka(x,y) = d(ax — y)

1
trA = /(5 3—1 ﬁ, 3#1

WF(Ka) = {(x, ax; —an,n) : n # 0}
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Need:
WF(Kwito(P_z)fl) N{(x,x;&,=&):xe X,£€ T;X\0}=0.

Propagation through radial sinks (E;f) and sources (E;) based on
earlier work of Melrose '94 and Vasy '13, gives this.

E,*

u

E}

s

The meromorphy of z ++ (P — z)71 : C*°(X) — D'(X) shows that
the poles are simple and residues are positive integers.



Now suppose that X = $*M, M an orientable Riemannian surface
of negative curvature.



Now suppose that X = $*M, M an orientable Riemannian surface
of negative curvature.

What is the order of vanishing, m, of {(p(\) at A =07



Now suppose that X = $*M, M an orientable Riemannian surface
of negative curvature.

What is the order of vanishing, m, of {(p(\) at A =07
When M = IN\H? (constant curvature)

Selberg trace formula — m=2g — 2.



Now suppose that X = $*M, M an orientable Riemannian surface

of negative curvature.
What is the order of vanishing, m, of {(p(\) at A =07
When M = IN\H? (constant curvature)

Selberg trace formula — m=2g — 2.

In general,



Now suppose that X = $*M, M an orientable Riemannian surface

of negative curvature.
What is the order of vanishing, m, of {(p(\) at A =07
When M = IN\H? (constant curvature)

Selberg trace formula — m=2g — 2.

In general,

G(A)

0 = Z NG



Now suppose that X = $*M, M an orientable Riemannian surface

of negative curvature.
What is the order of vanishing, m, of {(p(\) at A =07
When M = IN\H? (constant curvature)

Selberg trace formula — m=2g — 2.

In general,

G(A)

0 = Z NG

m = my(0) — mo(0) — m(0)



Now suppose that X = $*M, M an orientable Riemannian surface

of negative curvature.
What is the order of vanishing, m, of {(p(\) at A =07
When M = IN\H? (constant curvature)

Selberg trace formula — m=2g — 2.
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Re(Vu,u);2 >0, Vue C*°, WF(u) CE;, = ue C™.

Here L2(X) is defined using the smooth invariant measure on S* M:

dvol := a Ada

where « is the contact form,

a=zdClsm, STMi={(z,0) € T*"M:|¢P, =1},

a(V) =1, wyda=0, kera(x)= E,(x)® Es(x)
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Proof: If Vu =0, WF(u) C E} then, by the regularity result,
u € C>®(X). Also, u(etx) = u(x).
Hence

t— 400 ve Es(x),

(du(x), v) = {du(e'Vx)., de" (x)v) — 0 { )

It follows that du|g,eg, = 0 and that means that du = pa.

O=aAd(du)=paNda=— p=0
= du=0

= u = const

If V2u =0, WF(u) C E} then Vu = const.
But [, Vudvol = 0 so const = 0.
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Showing semisimplity is a little bit tricky...
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Thanks for your attention!



