Microlocal methods for dynamical systems

QMath 13 Georgia Tech

Maciej Zworski

UC Berkeley
October 10, 2016

Dynamical systems

Dynamical systems

Dynamical systems: a statistical approach

Dynamical systems: a statistical approach

Linear
Non-linear

Dynamical systems: a statistical approach

Completely integrable
Chaotic

In the chaotic case positions and directions get uniformly distributed:

Typical questions:
How long do we have to wait to have uniform distribution?
Are there periodic orbits and what information to they contain?

In the chaotic case positions and directions get uniformly distributed:

Recent work on the rate of decay for billiards by Baladi-Demers-Liverani '15

A dynamical analogue of the Riemann zeta function:

A dynamical analogue of the Riemann zeta function: Ruelle zeta function

A dynamical analogue of the Riemann zeta function: Ruelle zeta function

Replace primes with prime closed orbits in $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$

A dynamical analogue of the Riemann zeta function: Ruelle zeta function

Replace primes with prime closed orbits in $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$

Replace p by $\log \ell_{\gamma}$ where ℓ_{γ} is the length of a prime closed orbit.

A dynamical analogue of the Riemann zeta function: Ruelle zeta function

Replace primes with prime closed orbits in $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$

$$
\zeta_{\mathrm{D}}(s)=\prod_{\gamma}\left(1-e^{-s \ell_{\gamma}}\right)
$$

Replace p by $e^{\ell_{\gamma}}$ where ℓ_{γ} is the length of a prime closed orbit.

A dynamical analogue of the Riemann zeta function: Ruelle zeta function

Replace primes with prime closed orbits in $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$

$$
\zeta_{\mathrm{D}}(s)=\prod_{\gamma}\left(1-e^{-s \ell_{\gamma}}\right)
$$

Replace p by $e^{\ell_{\gamma}}$ where ℓ_{γ} is the length of a prime closed orbit.

It turns out that the zeros and poles of ζ_{D} contain information about statistical properties of the chaotic dynamical system.

A dynamical analogue of the Riemann zeta function: Ruelle zeta function

Replace primes with prime closed orbits in $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$

$$
\zeta_{\mathrm{D}}(s)=\prod_{\gamma}\left(1-e^{-s \ell_{\gamma}}\right)
$$

Replace p by $e^{\ell_{\gamma}}$ where ℓ_{γ} is the length of a prime closed orbit.

It turns out that the zeros and poles of ζ_{D} contain information about statistical properties of the chaotic dynamical system.

That includes the time at which we achieve uniform distribution.

Dynamical zeta functions have been studied by many authors:
Selberg '56, Artin-Mazur '65, Smale '67, Bowen-Lanford '68, Ruelle '76, Milnor-Thurston '77, Parry-Pollicott '83,'90, Pollicott '86, Cvitanović-Eckhardt '91, Mayer, '91, Rugh '96, Fried '86, '95, Kitaev '99, Petkov-Stoyanov '07, Baladi-Tsujii '08, Stoyanov '11, Faure-Tsujii '13, Borthwick-Weich '15, ...

$Y\left(\ell_{1}, \ell_{2}, \phi\right)$ for $\ell_{1}=\ell_{2}=7, \phi=\frac{\pi}{2}$

Dynamical zeta functions have been studied by many authors:
Selberg '56, Artin-Mazur '65, Smale '67, Bowen-Lanford '68, Ruelle '76, Milnor-Thurston '77, Parry-Pollicott '83,' 90 , Pollicott '86, Cvitanović-Eckhardt '91, Mayer, '91, Rugh '96, Fried '86, '95, Kitaev '99, Petkov-Stoyanov '07, Baladi-Tsujii '08, Stoyanov '11, Faure-Tsujii '13, Borthwick-Weich '15, ...

Smale '67 conjectured that for Anosov flows ζ_{D} is meromorphic in \mathbb{C} :

Dynamical zeta functions have been studied by many authors:
Selberg '56, Artin-Mazur '65, Smale '67, Bowen-Lanford '68, Ruelle '76, Milnor-Thurston '77, Parry-Pollicott '83,'90, Pollicott '86, Cvitanović-Eckhardt '91, Mayer, '91, Rugh '96, Fried '86, '95, Kitaev '99, Petkov-Stoyanov '07, Baladi-Tsujii '08, Stoyanov '11, Faure-Tsujii '13, Borthwick-Weich '15, ...

Smale '67 conjectured that for Anosov flows ζ_{D} is meromorphic in \mathbb{C} : "I must admit a positive answer would be a little shocking!"

What is an Anosov flow?

What is an Anosov flow?

$$
\begin{gathered}
T_{\rho} X=E_{0}(\rho) \oplus E_{s}(\rho) \oplus E_{u}(\rho), \quad \rho \mapsto E_{\bullet}(\rho) \text { continuous, } \\
d \varphi_{t}(\rho) E_{\bullet}(\rho)=E_{\bullet}\left(\varphi_{t}(\rho)\right),
\end{gathered}
$$

$$
\begin{aligned}
& \left|d \varphi_{t}(\rho) v\right|_{\varphi_{t}(\rho)} \leq C e^{-\theta|t|}|v|_{\rho,}, \quad v \in E_{u}(\rho), \quad t<0, \\
& \left|d \varphi_{t}(\rho) v\right|_{\varphi_{t}(\rho)} \leq C e^{-\theta|t|}|v|_{\rho}, \quad v \in E_{s}(\rho), \quad t>0
\end{aligned}
$$

What is an Anosov flow?

$$
\begin{gathered}
T_{\rho} X=E_{0}(\rho) \oplus E_{s}(\rho) \oplus E_{u}(\rho), \quad \rho \mapsto E_{\bullet}(\rho) \text { continuous, } \\
d \varphi_{t}(\rho) E_{\bullet}(\rho)=E_{\bullet}\left(\varphi_{t}(\rho)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \left|d \varphi_{t}(\rho) v\right|_{\varphi_{t}(\rho)} \leq C e^{-\theta|t|}|v|_{\rho,}, \quad v \in E_{u}(\rho), \quad t<0 \\
& \left|d \varphi_{t}(\rho) v\right|_{\varphi_{t}(\rho)} \leq C e^{-\theta|t|}|v|_{\rho,}, \quad v \in E_{s}(\rho), \quad t>0
\end{aligned}
$$

Example: $X=S^{*} M:=\left\{(x, \xi) \in T^{*} M ;|\xi|_{g}^{2}=1\right\}$, where (M, g) is a compact Riemannian manifold of negative curvature.

Theorem (Giulietti-Liverani-Pollicott '12, Dyatlov-Z '13)
For an Anosov flow on a compact manifold $\zeta_{D}(s)$ has a meromorphic continuation to \mathbb{C}.

Theorem (Giulietti-Liverani-Pollicott '12, Dyatlov-Z '13)
For an Anosov flow on a compact manifold $\zeta_{D}(s)$ has a meromorphic continuation to \mathbb{C}.

Our proof uses the microlocal approach to Anosov flows due to Faure-Sjöstrand '11 and radial point propagation of singularities estimates due to Melrose '94 and developed further by Vasy '13.

Theorem (Giulietti-Liverani-Pollicott '12, Dyatlov-Z '13)
For an Anosov flow on a compact manifold $\zeta_{D}(s)$ has a meromorphic continuation to \mathbb{C}.

Our proof uses the microlocal approach to Anosov flows due to Faure-Sjöstrand '11 and radial point propagation of singularities estimates due to Melrose '94 and developed further by Vasy '13.

The noncompact case (essentially the full Smale conjecture) recently completed by Dyatlov-Guillarmou.

Scattering theory

Faure-Sjöstrand

Scattering theory

Dyatlov-Z

Faure-Sjöstrand

Dyatlov-Guillarmou

Special case:

Special case:
Let (M, g) be a smooth oriented compact Riemannian surface of
negative curvature.

Special case:
Let (M, g) be a smooth oriented compact Riemannian surface of negative curvature.

$$
\zeta_{D}(s)=\prod_{\gamma}\left(1-e^{-s \ell_{\gamma}}\right), \quad \operatorname{Re} s \gg 1 .
$$

Special case:
Let (M, g) be a smooth oriented compact Riemannian surface of
negative curvature.

$$
\zeta_{D}(s)=\prod_{\gamma}\left(1-e^{-s \ell_{\gamma}}\right), \quad \operatorname{Re} s \gg 1 .
$$

Theorem (Dyatlov-Z '16)
Let g be the genus of M. Then $s^{2-2 g} \zeta_{D}(s)$ is holomorphic near $s=0$ and

$$
\left.s^{2-2 g} \zeta_{D}(s)\right|_{s=0} \neq 0
$$

Special case:
Let (M, g) be a smooth oriented compact Riemannian surface of
negative curvature.

$$
\zeta_{D}(s)=\prod_{\gamma}\left(1-e^{-s \ell_{\gamma}}\right), \quad \operatorname{Re} s \gg 1 .
$$

Theorem (Dyatlov-Z '16)
Let g be the genus of M. Then $s^{2-2 g} \zeta_{D}(s)$ is holomorphic near $s=0$ and

$$
\left.s^{2-2 g} \zeta_{D}(s)\right|_{s=0} \neq 0
$$

In particular, the set of lengths of closed orbits (the length spectrum) determines the genus.

Pollicott-Ruelle Resonances

Pollicott-Ruelle Resonances

Correlations: $f, g \in \mathcal{C}^{\infty}(X)$,

Pollicott-Ruelle Resonances

Correlations: $f, g \in \mathcal{C}^{\infty}(X), e^{-i t P} f(x)=f\left(\varphi_{-t}(x)\right)$,

Pollicott-Ruelle Resonances

Correlations: $f, g \in \mathcal{C}^{\infty}(X), e^{-i t P} f(x)=f\left(\varphi_{-t}(x)\right)$,

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle Resonances

Correlations: $f, g \in \mathcal{C}^{\infty}(X), e^{-i t P} f(x)=f\left(\varphi_{-t}(x)\right)$,

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Power spectrum:

$$
\widehat{\rho}_{f, g}(\lambda):=\int_{0}^{\infty} \rho_{f, g}(t) e^{i \lambda t} d t
$$

Pollicott-Ruelle Resonances

Correlations: $f, g \in \mathcal{C}^{\infty}(X), e^{-i t P} f(x)=f\left(\varphi_{-t}(x)\right)$,

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Power spectrum:

$$
\widehat{\rho}_{f, g}(\lambda):=\int_{0}^{\infty} \rho_{f, g}(t) e^{i \lambda t} d t
$$

Resonances: poles of $\widehat{\rho}_{f, g}(\lambda)$

Pollicott-Ruelle Resonances

Correlations: $f, g \in \mathcal{C}^{\infty}(X), e^{-i t P} f(x)=f\left(\varphi_{-t}(x)\right)$,

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Power spectrum:

$$
\widehat{\rho}_{f, g}(\lambda):=\int_{0}^{\infty} \rho_{f, g}(t) e^{i \lambda t} d t
$$

Resonances: poles of $\widehat{\rho}_{f, g}(\lambda)$

A "real" life example

A "real" life example

Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances,
Chekroun-Neelin-Kondrashov-McWilliams-Ghil, 2014

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\begin{gathered}
m(\lambda):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X):\left(\frac{1}{i} V-\lambda\right)^{r} u=0, \mathrm{WF}(u) \subset E_{u}^{*}\right\} \\
E_{u}^{*}:=\left(E_{u} \otimes E_{0}\right)^{\perp} \subset T^{*} X .
\end{gathered}
$$

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\begin{gathered}
m(\lambda):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X):\left(\frac{1}{i} V-\lambda\right)^{r} u=0, \mathrm{WF}(u) \subset E_{u}^{*}\right\} \\
E_{u}^{*}:=\left(E_{u} \otimes E_{0}\right)^{\perp} \subset T^{*} X .
\end{gathered}
$$

Blank-Keller-Liverani'02 ... Faure-Sjöstrand '11...

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\begin{gathered}
m(\lambda):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X):\left(\frac{1}{i} V-\lambda\right)^{r} u=0, \mathrm{WF}(u) \subset E_{u}^{*}\right\} \\
E_{u}^{*}:=\left(E_{u} \otimes E_{0}\right)^{\perp} \subset T^{*} X .
\end{gathered}
$$

Blank-Keller-Liverani'02 ... Faure-Sjöstrand '11...
To obtain exponential decay of correlations one needs a gap:

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\begin{gathered}
m(\lambda):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X):\left(\frac{1}{i} V-\lambda\right)^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\} \\
E_{u}^{*}:=\left(E_{u} \otimes E_{0}\right)^{\perp} \subset T^{*} X .
\end{gathered}
$$

Blank-Keller-Liverani'02 ... Faure-Sjöstrand '11...
To obtain exponential decay of correlations one needs a gap:

$$
\nu_{0}=\sup \{\nu: \text { no resonances for } \operatorname{Im} \lambda>-\nu\}
$$

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\begin{gathered}
m(\lambda):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X):\left(\frac{1}{i} V-\lambda\right)^{r} u=0, W F(u) \subset E_{u}^{*}\right\} \\
E_{u}^{*}:=\left(E_{u} \otimes E_{0}\right)^{\perp} \subset T^{*} X .
\end{gathered}
$$

Blank-Keller-Liverani'02 ... Faure-Sjöstrand '11...
To obtain exponential decay of correlations one needs a gap:

$$
\begin{gathered}
\nu_{0}=\sup \{\nu: \text { no resonances for } \operatorname{Im} \lambda>-\nu\} \\
\nu_{1}=\sup \left\{\nu: \text { finite } \mathrm{n}^{\circ} \text { of resonances for } \operatorname{Im} \lambda>-\nu\right\}
\end{gathered}
$$

$$
\rho_{f, g}(t)=\int_{X} e^{-i t P} f(x) g(x) d x
$$

Pollicott-Ruelle resonances are the poles of $\widehat{\rho}_{f, g}(\lambda)$.

$$
\begin{gathered}
m(\lambda):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X):\left(\frac{1}{i} V-\lambda\right)^{r} u=0, \mathrm{WF}(u) \subset E_{u}^{*}\right\} \\
E_{u}^{*}:=\left(E_{u} \otimes E_{0}\right)^{\perp} \subset T^{*} X .
\end{gathered}
$$

Blank-Keller-Liverani'02 ... Faure-Sjöstrand '11...
To obtain exponential decay of correlations one needs a gap:

$$
\begin{gathered}
\nu_{0}=\sup \{\nu: \text { no resonances for } \operatorname{Im} \lambda>-\nu\} \\
\nu_{1}=\sup \left\{\nu: \text { finite } \mathrm{n}^{\circ} \text { of resonances for } \operatorname{Im} \lambda>-\nu\right\}
\end{gathered}
$$

$\nu_{1}>0$ for contact flows (and in particular for geodesic Anosov flows): Dolgopyat'98, Liverani '04, Tsujii'12, Nonnenmacher-Z'15.

A "real" life investigation of the gap

A "real" life investigation of the gap

A "real" life investigation of the gap

Rough parameter dependence of the spectral gap in climate models, Chekroun-Neelin-Kondrashov-McWilliams-Ghil, 2014.

Microlocal analysis (semiclassical version)

- Phase space: $(x, \xi) \in T^{*} X$
- Semiclassical parameter: $h \rightarrow 0$, the effective wavelength
- Classical observables: $a(x, \xi) \in C^{\infty}\left(T^{*} X\right)$
- Quantization: $\mathrm{Op}_{h}(a)=a\left(x, \frac{h}{i} \partial_{x}\right): \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)$, semiclassical pseudodifferential operator

Microlocal analysis (semiclassical version)

- Phase space: $(x, \xi) \in T^{*} X$
- Semiclassical parameter: $h \rightarrow 0$, the effective wavelength
- Classical observables: $a(x, \xi) \in C^{\infty}\left(T^{*} X\right)$
- Quantization: $\mathrm{Op}_{h}(a)=a\left(x, \frac{h}{i} \partial_{x}\right): \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)$, semiclassical pseudodifferential operator

Basic examples

- $a(x, \xi)=x_{j} \quad \Longrightarrow \quad \operatorname{Op}_{h}(a)=x_{j} \quad$ multiplication operator
- $a(x, \xi)=\xi_{j} \quad \Longrightarrow \quad \operatorname{Op}_{h}(a)=\frac{h}{i} \partial_{x_{j}}$

Microlocal analysis (semiclassical version)

- Phase space: $(x, \xi) \in T^{*} X$
- Semiclassical parameter: $h \rightarrow 0$, the effective wavelength
- Classical observables: $a(x, \xi) \in C^{\infty}\left(T^{*} X\right)$
- Quantization: $\mathrm{Op}_{h}(a)=a\left(x, \frac{h}{i} \partial_{x}\right): \mathcal{C}^{\infty}(X) \rightarrow \mathcal{C}^{\infty}(X)$, semiclassical pseudodifferential operator

Basic examples

- $a(x, \xi)=x_{j} \quad \Longrightarrow \quad \operatorname{Op}_{h}(a)=x_{j} \quad$ multiplication operator
- $a(x, \xi)=\xi_{j} \quad \Longrightarrow \quad \operatorname{Op}_{h}(a)=\frac{h}{i} \partial_{x_{j}}$

Classical-quantum correspondence

- $\left[\mathrm{Op}_{h}(a), O p_{h}(b)\right]=\frac{h}{i} O p_{h}(\{a, b\})+\mathcal{O}\left(h^{2}\right)$
- $\{a, b\}=\partial_{\xi} a \cdot \partial_{x} b-\partial_{x} a \cdot \partial_{\xi} b=H_{a} b, \quad e^{t H_{a}}$ Hamiltonian flow
- Example: $\left[\mathrm{Op}_{h}\left(\xi_{k}\right), \mathrm{Op}_{h}\left(x_{j}\right)\right]=\frac{h}{i} \delta_{j k}$

Standard semiclassical estimates

General question

$$
P=\operatorname{Op}_{h}(p), \quad P u=f \quad \Longrightarrow \quad\|u\| \lesssim\|f\| ?
$$

Standard semiclassical estimates

General question
$P=\operatorname{Op}_{h}(p), \quad P u=f \quad \Longrightarrow \quad\|u\| \lesssim\|f\| ?$
Control u microlocally:
$\left\|\operatorname{Op}_{h}(a) u\right\| \lesssim$

$$
\|f\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

Standard semiclassical estimates

General question

$$
P=\operatorname{Op}_{h}(p), \quad P u=f \quad \Longrightarrow \quad\|u\| \lesssim\|f\| ?
$$

Control u microlocally:

$$
\left\|\mathrm{Op}_{h}(a) u\right\| \lesssim \quad\|f\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

Elliptic estimate

Standard semiclassical estimates

General question

$$
P=\mathrm{Op}_{h}(p), \quad P u=f \quad \Longrightarrow \quad\|u\| \lesssim\|f\| ?
$$

Control u microlocally:

$$
\left\|\mathrm{Op}_{h}(a) u\right\| \lesssim\left\|\mathrm{Op}_{h}(b) u\right\|+h^{-1}\|f\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

Elliptic estimate

Propagation of singularities

Phase space description of singularities

Phase space description of singularities

$$
u \in \mathcal{D}^{\prime}(X) \longmapsto W F(u) \subset T^{*} X \backslash 0
$$

Phase space description of singularities

$$
u \in \mathcal{D}^{\prime}(X) \longmapsto W F(u) \subset T^{*} X \backslash 0
$$

$$
\begin{gathered}
(x, \xi) \notin W F(u) \\
\Uparrow
\end{gathered}
$$

$$
\exists a \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(T^{*} X\right), a(x, \xi) \neq 0,\|a(x, h D) u\|_{L^{2}}=\mathcal{O}\left(h^{\infty}\right)
$$

Phase space description of singularities

$$
u \in \mathcal{D}^{\prime}(X) \longmapsto W F(u) \subset T^{*} X \backslash 0
$$

$$
\begin{gathered}
(x, \xi) \notin W F(u) \\
\Uparrow
\end{gathered}
$$

$$
\exists a \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(T^{*} X\right), a(x, \xi) \neq 0,\|a(x, h D) u\|_{L^{2}}=\mathcal{O}\left(h^{\infty}\right)
$$

Examples:

- $\mathrm{WF}\left(\delta_{0}\right)=\left\{(0, \xi): \xi \in \mathbb{R}^{n} \backslash 0\right\}$

Phase space description of singularities

$$
u \in \mathcal{D}^{\prime}(X) \longmapsto W F(u) \subset T^{*} X \backslash 0
$$

$$
\begin{gathered}
(x, \xi) \notin W F(u) \\
\Uparrow
\end{gathered}
$$

$$
\exists a \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(T^{*} X\right), a(x, \xi) \neq 0,\|a(x, h D) u\|_{L^{2}}=\mathcal{O}\left(h^{\infty}\right)
$$

Examples:

- WF $\left(\delta_{0}\right)=\left\{(0, \xi): \xi \in \mathbb{R}^{n} \backslash 0\right\}$
- WF $\left((x-i 0)^{-1}\right)=\{(0, \xi): \xi>0\}$

Phase space description of singularities

$$
u \in \mathcal{D}^{\prime}(X) \longmapsto W F(u) \subset T^{*} X \backslash 0
$$

$$
\begin{gathered}
(x, \xi) \notin W F(u) \\
\Uparrow
\end{gathered}
$$

$$
\exists a \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(T^{*} X\right), a(x, \xi) \neq 0,\|a(x, h D) u\|_{L^{2}}=\mathcal{O}\left(h^{\infty}\right)
$$

Examples:

- $\mathrm{WF}\left(\delta_{0}\right)=\left\{(0, \xi): \xi \in \mathbb{R}^{n} \backslash 0\right\}$
- WF $\left((x-i 0)^{-1}\right)=\{(0, \xi): \xi>0\}$
- WF $(\delta(a x-y))=\{(x, a x ;-a \eta, \eta): y \in \mathbb{R}, \xi \in \mathbb{R} \backslash 0\}$

Return to the Ruelle zeta function (with a slight change of convention):

$$
\zeta_{D}(\lambda)=\prod_{\gamma}\left(1-e^{i \lambda \ell_{\gamma}}\right)
$$

Return to the Ruelle zeta function (with a slight change of convention):

$$
\zeta_{D}(\lambda)=\prod_{\gamma}\left(1-e^{i \lambda \ell_{\gamma}}\right)=\frac{\zeta_{2 m-1}(\lambda) \cdots \zeta_{1}(\lambda)}{\zeta_{2 m}(\lambda) \cdots \zeta_{0}(\lambda)}, \quad 2 m+1:=\operatorname{dim} X
$$

Return to the Ruelle zeta function (with a slight change of convention):

$$
\begin{gathered}
\zeta_{D}(\lambda)=\prod_{\gamma}\left(1-e^{i \lambda \ell_{\gamma}}\right)=\frac{\zeta_{2 m-1}(\lambda) \cdots \zeta_{1}(\lambda)}{\zeta_{2 m}(\lambda) \cdots \zeta_{0}(\lambda)}, \quad 2 m+1:=\operatorname{dim} X \\
\zeta_{k}(\lambda):=\left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}} \operatorname{tr} \wedge^{k} P_{\gamma}^{m}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right), \quad \operatorname{Im} \lambda \gg 1
\end{gathered}
$$

Return to the Ruelle zeta function (with a slight change of convention):

$$
\begin{gathered}
\zeta_{D}(\lambda)=\prod_{\gamma}\left(1-e^{i \lambda \ell_{\gamma}}\right)=\frac{\zeta_{2 m-1}(\lambda) \cdots \zeta_{1}(\lambda)}{\zeta_{2 m}(\lambda) \cdots \zeta_{0}(\lambda)}, \quad 2 m+1:=\operatorname{dim} X \\
\zeta_{k}(\lambda):=\left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}} \operatorname{tr} \wedge^{k} P_{\gamma}^{m}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right), \quad \operatorname{Im} \lambda \gg 1
\end{gathered}
$$

\mathcal{P}_{γ} is the linearized Poincaré map:

Return to the Ruelle zeta function (with a slight change of convention):

$$
\begin{gathered}
\zeta_{D}(\lambda)=\prod_{\gamma}\left(1-e^{i \lambda \ell_{\gamma}}\right)=\frac{\zeta_{2 m-1}(\lambda) \cdots \zeta_{1}(\lambda)}{\zeta_{2 m}(\lambda) \cdots \zeta_{0}(\lambda)}, \quad 2 m+1:=\operatorname{dim} X \\
\zeta_{k}(\lambda):=\left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}} \operatorname{tr} \wedge^{k} P_{\gamma}^{m}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right), \quad \operatorname{Im} \lambda \gg 1
\end{gathered}
$$

\mathcal{P}_{γ} is the linearized Poincaré map:

Return to the Ruelle zeta function (with a slight change of convention):

$$
\begin{gathered}
\zeta_{D}(\lambda)=\prod_{\gamma}\left(1-e^{i \lambda \ell_{\gamma}}\right)=\frac{\zeta_{2 m-1}(\lambda) \cdots \zeta_{1}(\lambda)}{\zeta_{2 m}(\lambda) \cdots \zeta_{0}(\lambda)}, \quad 2 m+1:=\operatorname{dim} X . \\
\zeta_{k}(\lambda):=\left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}} \operatorname{tr} \wedge^{k} P_{\gamma}^{m}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right), \quad \operatorname{Im} \lambda \gg 1 .
\end{gathered}
$$

Theorem (Dyatlov-Z '16)
$\zeta_{k}(\lambda)$ extends to an entire function and the multiplicities of its zeros are given by

$$
\operatorname{dim}\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(X, \Omega_{0}^{k}\right):\left(\frac{1}{i} \mathcal{L}_{V}-\lambda\right)^{r} \mathbf{u}=0, \mathrm{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
$$

where Ω_{0}^{k} are k-forms satisfying $\iota_{V} \mathbf{u}=0$.

The starting point for relating the zeta function to the distributional spectrum of $\frac{1}{i} \mathcal{L}_{V}$ is is the Atiyah-Bott-Guillemin trace formula:

The starting point for relating the zeta function to the distributional spectrum of $\frac{1}{i} \mathcal{L}_{V}$ is is the Atiyah-Bott-Guillemin trace formula:

$$
\operatorname{tr} e^{-i t P / h}=\sum_{m=1}^{\infty} \sum_{\gamma} \frac{\ell_{\gamma} \delta\left(t-m \ell_{\gamma}\right)}{\left|I-\mathcal{P}_{\gamma}^{m}\right|}, \quad P=h V / i
$$

The starting point for relating the zeta function to the distributional spectrum of $\frac{1}{i} \mathcal{L}_{V}$ is is the Atiyah-Bott-Guillemin trace formula:

$$
\operatorname{tr} e^{-i t P / h}=\sum_{m=1}^{\infty} \sum_{\gamma} \frac{\ell_{\gamma} \delta\left(t-m \ell_{\gamma}\right)}{\left|I-\mathcal{P}_{\gamma}^{m}\right|}, \quad P=h V / i
$$

This is related to the first building block of the zeta function:

$$
\zeta_{0}(\lambda):=\exp \left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right)
$$

The starting point for relating the zeta function to the distributional spectrum of $\frac{1}{i} \mathcal{L}_{V}$ is is the Atiyah-Bott-Guillemin trace formula:

$$
\operatorname{tr} e^{-i t P / h}=\sum_{m=1}^{\infty} \sum_{\gamma} \frac{\ell_{\gamma} \delta\left(t-m \ell_{\gamma}\right)}{\left|I-\mathcal{P}_{\gamma}^{m}\right|}, \quad P=h V / i
$$

This is related to the first building block of the zeta function:

$$
\zeta_{0}(\lambda):=\exp \left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right)
$$

Since

$$
(P-z)^{-1}=\frac{i}{h} \int_{0}^{\infty} e^{-i t P / h} d t
$$

The starting point for relating the zeta function to the distributional spectrum of $\frac{1}{i} \mathcal{L}_{V}$ is is the Atiyah-Bott-Guillemin trace formula:

$$
\operatorname{tr} e^{-i t P / h}=\sum_{m=1}^{\infty} \sum_{\gamma} \frac{\ell_{\gamma} \delta\left(t-m \ell_{\gamma}\right)}{\left|I-\mathcal{P}_{\gamma}^{m}\right|}, \quad P=h V / i
$$

This is related to the first building block of the zeta function:

$$
\zeta_{0}(\lambda):=\exp \left(-\sum_{m=1}^{\infty} \sum_{\gamma} \frac{e^{i m \lambda \ell_{\gamma}}}{m\left|\operatorname{det}\left(I-\mathcal{P}_{\gamma}^{m}\right)\right|}\right)
$$

Since

$$
\begin{gathered}
(P-z)^{-1}=\frac{i}{h} \int_{0}^{\infty} e^{-i t P / h} d t \\
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda) .
\end{gathered}
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
A u(x)= & \int_{X} K_{A}(x, y) u(y) d y \\
\operatorname{tr} A & :=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
& A u(x)=\int_{X} K_{A}(x, y) u(y) d y \\
& \operatorname{tr} A:=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

Allowed under a wave front set condition

$$
\mathrm{WF}\left(K_{A}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
& A u(x)=\int_{X} K_{A}(x, y) u(y) d y \\
& \operatorname{tr} A:=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

Allowed under a wave front set condition

$$
\mathrm{WF}\left(K_{A}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
& A u(x)=\int_{X} K_{A}(x, y) u(y) d y \\
& \operatorname{tr} A:=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

Allowed under a wave front set condition

$$
\mathrm{WF}\left(K_{A}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Example: $A u(x):=u(a x), x \in \mathbb{R}$,

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
& A u(x)=\int_{X} K_{A}(x, y) u(y) d y \\
& \operatorname{tr} A:=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

Allowed under a wave front set condition

$$
\mathrm{WF}\left(K_{A}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Example: $A u(x):=u(a x), x \in \mathbb{R}, K_{A}(x, y)=\delta(a x-y)$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
& A u(x)=\int_{X} K_{A}(x, y) u(y) d y \\
& \operatorname{tr} A:=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

Allowed under a wave front set condition

$$
\mathrm{WF}\left(K_{A}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Example: $A u(x):=u(a x), x \in \mathbb{R}, K_{A}(x, y)=\delta(a x-y)$

$$
\operatorname{tr} A=\int_{\mathbb{R}} \delta((a-1) x)=\frac{1}{|a-1|}, \quad a \neq 1
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Here the trace is a formal trace obtained by integration over the diagonal:

$$
\begin{aligned}
& A u(x)=\int_{X} K_{A}(x, y) u(y) d y \\
& \operatorname{tr} A:=\int_{X} K_{A}(x, x) d x
\end{aligned}
$$

Allowed under a wave front set condition

$$
\mathrm{WF}\left(K_{A}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Example: $A u(x):=u(a x), x \in \mathbb{R}, K_{A}(x, y)=\delta(a x-y)$

$$
\operatorname{tr} A=\int_{\mathbb{R}} \delta((a-1) x)=\frac{1}{|a-1|}, \quad a \neq 1
$$

$$
\mathrm{WF}\left(K_{A}\right)=\{(x, a x ;-a \eta, \eta): \eta \neq 0\}
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Need:

$$
\mathrm{WF}\left(K_{\varphi_{-t_{0}}^{*}}(P-z)^{-1}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Need:

$$
\mathrm{WF}\left(K_{\varphi_{-t_{0}}^{*}(P-z)^{-1}}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Propagation through radial sinks $\left(E_{u}^{*}\right)$ and sources $\left(E_{s}^{*}\right)$ based on earlier work of Melrose '94 and Vasy '13, gives this.

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Need:

$$
\mathrm{WF}\left(K_{\varphi_{-t_{0}}^{*}(P-z)^{-1}}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Propagation through radial sinks $\left(E_{u}^{*}\right)$ and sources $\left(E_{s}^{*}\right)$ based on earlier work of Melrose '94 and Vasy '13, gives this.

$$
e^{i t_{0} \lambda} h \operatorname{tr} \varphi_{-t_{0}}^{*}(P-h \lambda)^{-1}=\frac{\partial}{\partial \lambda} \log \zeta_{0}(\lambda)
$$

Need:

$$
\mathrm{WF}\left(K_{\varphi_{-t_{0}}^{*}(P-z)^{-1}}\right) \cap\left\{(x, x ; \xi,-\xi): x \in X, \xi \in T_{x}^{*} X \backslash 0\right\}=\emptyset
$$

Propagation through radial sinks $\left(E_{u}^{*}\right)$ and sources $\left(E_{s}^{*}\right)$ based on earlier work of Melrose '94 and Vasy '13, gives this.

The meromorphy of $z \mapsto(P-z)^{-1}: \mathcal{C}^{\infty}(X) \rightarrow \mathcal{D}^{\prime}(X)$ shows that the poles are simple and residues are positive integers.

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

What is the order of vanishing, m, of $\zeta_{D}(\lambda)$ at $\lambda=0$?

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

What is the order of vanishing, m, of $\zeta_{D}(\lambda)$ at $\lambda=0$?
When $M=\Gamma \backslash \mathbb{H}^{2}$ (constant curvature)
Selberg trace formula $\Longrightarrow m=2 g-2$.

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

What is the order of vanishing, m, of $\zeta_{D}(\lambda)$ at $\lambda=0$?
When $M=\Gamma \backslash \mathbb{H}^{2}$ (constant curvature)
Selberg trace formula $\Longrightarrow m=2 g-2$.
In general,

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

What is the order of vanishing, m, of $\zeta_{D}(\lambda)$ at $\lambda=0$?
When $M=\Gamma \backslash \mathbb{H}^{2}$ (constant curvature)
Selberg trace formula $\Longrightarrow m=2 g-2$.
In general,

$$
\zeta_{D}(\lambda)=\frac{\zeta_{1}(\lambda)}{\zeta_{0}(\lambda) \zeta_{2}(\lambda)}
$$

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

What is the order of vanishing, m, of $\zeta_{D}(\lambda)$ at $\lambda=0$?
When $M=\Gamma \backslash \mathbb{H}^{2}$ (constant curvature)
Selberg trace formula $\Longrightarrow m=2 g-2$.
In general,

$$
\begin{gathered}
\zeta_{D}(\lambda)=\frac{\zeta_{1}(\lambda)}{\zeta_{0}(\lambda) \zeta_{2}(\lambda)} \\
m=m_{1}(0)-m_{0}(0)-m_{2}(0)
\end{gathered}
$$

Now suppose that $X=S^{*} M, M$ an orientable Riemannian surface of negative curvature.

What is the order of vanishing, m, of $\zeta_{D}(\lambda)$ at $\lambda=0$?
When $M=\Gamma \backslash \mathbb{H}^{2}$ (constant curvature)

$$
\text { Selberg trace formula } \Longrightarrow m=2 g-2 \text {. }
$$

In general,

$$
\begin{gathered}
\zeta_{D}(\lambda)=\frac{\zeta_{1}(\lambda)}{\zeta_{0}(\lambda) \zeta_{2}(\lambda)} \\
m=m_{1}(0)-m_{0}(0)-m_{2}(0) \\
m_{j}(0)=\operatorname{dim}\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(X, \Omega_{0}^{j}\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \mathrm{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

where $\Omega_{0}^{j}(X)$ are j-forms satisfying $\iota_{V} \mathbf{u}=0$.

Claim: $m_{0}(0)=m_{2}(0)=1, m_{1}(0)=\operatorname{dim} H^{1}(X, \mathbb{C})$.

Claim: $m_{0}(0)=m_{2}(0)=1, m_{1}(0)=\operatorname{dim} H^{1}(X, \mathbb{C})$.

$$
m_{0}(0)=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Claim: $m_{0}(0)=m_{2}(0)=1, m_{1}(0)=\operatorname{dim} H^{1}(X, \mathbb{C})$.

$$
m_{0}(0)=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1 .
$$

Regularity result:

$$
\operatorname{Re}\langle V u, u\rangle_{L^{2}} \geq 0, \quad V u \in C^{\infty}, \operatorname{WF}(u) \subset E_{u}^{*} \Longrightarrow u \in C^{\infty}
$$

Claim: $m_{0}(0)=m_{2}(0)=1, m_{1}(0)=\operatorname{dim} H^{1}(X, \mathbb{C})$.

$$
m_{0}(0)=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1 .
$$

Regularity result:

$$
\operatorname{Re}\langle V u, u\rangle_{L^{2}} \geq 0, \quad V u \in C^{\infty}, \operatorname{WF}(u) \subset E_{u}^{*} \Longrightarrow u \in C^{\infty}
$$

Here $L^{2}(X)$ is defined using the smooth invariant measure on $S^{*} M$:

$$
d \mathrm{vol}:=\alpha \wedge d \alpha
$$

where α is the contact form,

$$
\begin{gathered}
\alpha=\left.z d \zeta\right|_{S^{*} M}, \quad S^{*} M:=\left\{(z, \zeta) \in T^{*} M:|\zeta|_{g(z)}^{2}=1\right\}, \\
\alpha(V)=1, \quad \iota_{V} d \alpha=0, \quad \operatorname{ker} \alpha(x)=E_{u}(x) \oplus E_{s}(x)
\end{gathered}
$$

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1 .
$$

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1 .
$$

Proof:

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$.

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$. Also, $u\left(e^{t V} x\right)=u(x)$.

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$. Also, $u\left(e^{t V} x\right)=u(x)$.
Hence

$$
\langle d u(x), v\rangle=\left\langle d u\left(e^{t v} x\right), d e^{t v}(x) v\right\rangle \longrightarrow 0 \begin{cases}t \rightarrow+\infty & v \in E_{s}(x) \\ t \rightarrow-\infty & v \in E_{u}(x)\end{cases}
$$

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$. Also, $u\left(e^{t V} x\right)=u(x)$.
Hence

$$
\langle d u(x), v\rangle=\left\langle d u\left(e^{t v} x\right), d e^{t v}(x) v\right\rangle \longrightarrow 0 \begin{cases}t \rightarrow+\infty & v \in E_{s}(x), \\ t \rightarrow-\infty & v \in E_{u}(x)\end{cases}
$$

It follows that $\left.d u\right|_{E_{u} \oplus E_{s}}=0$ and that means that $d u=\varphi \alpha$.

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$. Also, $u\left(e^{t V} x\right)=u(x)$.
Hence
$\langle d u(x), v\rangle=\left\langle d u\left(e^{t V} x\right), d e^{t V}(x) v\right\rangle \longrightarrow 0 \begin{cases}t \rightarrow+\infty & v \in E_{s}(x), \\ t \rightarrow-\infty & v \in E_{u}(x) .\end{cases}$
It follows that $\left.d u\right|_{E_{u} \oplus E_{s}}=0$ and that means that $d u=\varphi \alpha$.

$$
\begin{aligned}
0=\alpha \wedge d(d u)=\varphi \alpha \wedge d \alpha & \Longrightarrow \varphi=0 \\
& \Longrightarrow d u=0 \\
& \Longrightarrow u=\mathrm{const}
\end{aligned}
$$

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$. Also, $u\left(e^{t V} x\right)=u(x)$.
Hence
$\langle d u(x), v\rangle=\left\langle d u\left(e^{t V} x\right), d e^{t V}(x) v\right\rangle \longrightarrow 0 \begin{cases}t \rightarrow+\infty & v \in E_{s}(x), \\ t \rightarrow-\infty & v \in E_{u}(x) .\end{cases}$
It follows that $\left.d u\right|_{E_{u} \oplus E_{s}}=0$ and that means that $d u=\varphi \alpha$.

$$
\begin{aligned}
0=\alpha \wedge d(d u)=\varphi \alpha \wedge d \alpha & \Longrightarrow \varphi=0 \\
& \Longrightarrow d u=0 \\
& \Longrightarrow u=\mathrm{const}
\end{aligned}
$$

If $V^{2} u=0, \operatorname{WF}(u) \subset E_{u}^{*}$ then $V u=$ const.

$$
m_{0}(0):=\operatorname{dim}\left\{u \in \mathcal{D}^{\prime}(X): V^{r} u=0, \operatorname{WF}(u) \subset E_{u}^{*}\right\}=1
$$

Proof: If $V u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then, by the regularity result, $u \in \mathcal{C}^{\infty}(X)$. Also, $u\left(e^{t V} x\right)=u(x)$.
Hence
$\langle d u(x), v\rangle=\left\langle d u\left(e^{t V} x\right), d e^{t V}(x) v\right\rangle \longrightarrow 0 \begin{cases}t \rightarrow+\infty & v \in E_{s}(x), \\ t \rightarrow-\infty & v \in E_{u}(x) .\end{cases}$
It follows that $\left.d u\right|_{E_{u} \oplus E_{s}}=0$ and that means that $d u=\varphi \alpha$.

$$
\begin{aligned}
0=\alpha \wedge d(d u)=\varphi \alpha \wedge d \alpha & \Longrightarrow \varphi=0 \\
& \Longrightarrow d u=0 \\
& \Longrightarrow u=\mathrm{const}
\end{aligned}
$$

If $V^{2} u=0, \mathrm{WF}(u) \subset E_{u}^{*}$ then $V u=$ const.
But $\int_{X} V u d$ vol $=0$ so const $=0$.

$$
\begin{gathered}
m_{1}(0)=\operatorname{dim} Y_{1}=\operatorname{dim} H^{1}(X, \mathbb{C}), \\
Y_{1}:=\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(\Omega^{1}(X)\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \iota V \mathbf{u}=0, \operatorname{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

$$
\begin{gathered}
m_{1}(0)=\operatorname{dim} Y_{1}=\operatorname{dim} H^{1}(X, \mathbb{C}), \\
Y_{1}:=\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(\Omega^{1}(X)\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \iota V \mathbf{u}=0, \operatorname{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

1. $\mathcal{L}_{V} \mathbf{u}=0$ is equivalent to (since $\iota_{V} \mathbf{u}=0$) to $\iota_{V} d \mathbf{u}=0$. Hence $d \mathbf{u}$ is a resonant state for 2 -forms and $d \mathbf{u}=c d \alpha$. Since $\mathbf{u} \wedge d \alpha=\iota_{V} \mathbf{u} \alpha \wedge d \alpha=0$ we have

$$
\operatorname{cvol}(X)=\int d \mathbf{u} \wedge \alpha=\int \mathbf{u} \wedge d \alpha=0
$$

$$
\begin{gathered}
m_{1}(0)=\operatorname{dim} Y_{1}=\operatorname{dim} H^{1}(X, \mathbb{C}), \\
Y_{1}:=\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(\Omega^{1}(X)\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \iota V \mathbf{u}=0, \operatorname{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

1. $\mathcal{L}_{V} \mathbf{u}=0$ is equivalent to (since $\iota_{V} \mathbf{u}=0$) to $\iota_{V} d \mathbf{u}=0$. Hence $d \mathbf{u}$ is a resonant state for 2 -forms and $d \mathbf{u}=c d \alpha$. Since $\mathbf{u} \wedge d \alpha=\iota_{V} \mathbf{u} \alpha \wedge d \alpha=0$ we have

$$
\operatorname{cvol}(X)=\int d \mathbf{u} \wedge \alpha=\int \mathbf{u} \wedge d \alpha=0
$$

We conclude that $d \mathbf{u}=0$.

$$
\begin{gathered}
m_{1}(0)=\operatorname{dim} Y_{1}=\operatorname{dim} H^{1}(X, \mathbb{C}) \\
Y_{1}:=\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(\Omega^{1}(X)\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \iota_{V} \mathbf{u}=0, W F(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

1. $\mathcal{L}_{V} \mathbf{u}=0$ is equivalent to (since $\iota_{V} \mathbf{u}=0$) to $\iota_{V} d \mathbf{u}=0$. Hence $d \mathbf{u}$ is a resonant state for 2 -forms and $d \mathbf{u}=c d \alpha$. Since $\mathbf{u} \wedge d \alpha=\iota_{V} \mathbf{u} \alpha \wedge d \alpha=0$ we have

$$
\operatorname{cvol}(X)=\int d \mathbf{u} \wedge \alpha=\int \mathbf{u} \wedge d \alpha=0
$$

We conclude that $d \mathbf{u}=0$.
2. Hodge theory: $\exists \varphi \in \mathcal{D}^{\prime}, \mathrm{WF}(\varphi) \subset E_{u}^{*}, \mathbf{u}-d \varphi \in C^{\infty}\left(\Omega^{1}(X)\right)$.

$$
\begin{gathered}
m_{1}(0)=\operatorname{dim} Y_{1}=\operatorname{dim} H^{1}(X, \mathbb{C}) \\
Y_{1}:=\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(\Omega^{1}(X)\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \iota \nu \mathbf{u}=0, \operatorname{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

1. $\mathcal{L}_{V} \mathbf{u}=0$ is equivalent to (since $\iota_{V} \mathbf{u}=0$) to $\iota_{V} d \mathbf{u}=0$. Hence $d \mathbf{u}$ is a resonant state for 2 -forms and $d \mathbf{u}=c d \alpha$. Since $\mathbf{u} \wedge d \alpha=\iota_{V} \mathbf{u} \alpha \wedge d \alpha=0$ we have

$$
\operatorname{cvol}(X)=\int d \mathbf{u} \wedge \alpha=\int \mathbf{u} \wedge d \alpha=0
$$

We conclude that $d \mathbf{u}=0$.
2. Hodge theory: $\exists \varphi \in \mathcal{D}^{\prime}, \mathrm{WF}(\varphi) \subset E_{u}^{*}, \mathbf{u}-d \varphi \in C^{\infty}\left(\Omega^{1}(X)\right)$.

$$
Y_{1} \ni \mathbf{u} \mapsto[\mathbf{u}-d \varphi] \in H^{1}(X, \mathbb{C})
$$

is an isomorphism

$$
\begin{gathered}
m_{1}(0)=\operatorname{dim} Y_{1}=\operatorname{dim} H^{1}(X, \mathbb{C}) \\
Y_{1}:=\left\{\mathbf{u} \in \mathcal{D}^{\prime}\left(\Omega^{1}(X)\right): \mathcal{L}_{V}^{r} \mathbf{u}=0, \iota_{V} \mathbf{u}=0, \operatorname{WF}(\mathbf{u}) \subset E_{u}^{*}\right\}
\end{gathered}
$$

1. $\mathcal{L}_{V} \mathbf{u}=0$ is equivalent to (since $\iota_{V} \mathbf{u}=0$) to $\iota_{V} d \mathbf{u}=0$. Hence $d \mathbf{u}$ is a resonant state for 2 -forms and $d \mathbf{u}=c d \alpha$. Since $\mathbf{u} \wedge d \alpha=\iota_{V} \mathbf{u} \alpha \wedge d \alpha=0$ we have

$$
\operatorname{cvol}(X)=\int d \mathbf{u} \wedge \alpha=\int \mathbf{u} \wedge d \alpha=0
$$

We conclude that $d \mathbf{u}=0$.
2. Hodge theory: $\exists \varphi \in \mathcal{D}^{\prime}, \operatorname{WF}(\varphi) \subset E_{u}^{*}, \mathbf{u}-d \varphi \in C^{\infty}\left(\Omega^{1}(X)\right)$.

$$
Y_{1} \ni \mathbf{u} \mapsto[\mathbf{u}-d \varphi] \in H^{1}(X, \mathbb{C})
$$

is an isomorphism
Showing semisimplity is a little bit tricky...

$$
m_{0}(0)=m_{2}(0)=1, \quad m_{1}(0)=\operatorname{dim} H^{1}(X, \mathbb{C}) .
$$

Since for surfaces of genus $g \geq 2$,

$$
H^{1}\left(S^{*} M, \mathbb{C}\right) \simeq H^{1}(M, \mathbb{C})
$$

it follows that the order of vanishing of ζ_{D} at 0 is

$$
m=-m_{0}(0)+m_{1}(0)-m_{2}(0)=- \text { Euler characteristic of } M=2 g-2
$$

$$
m_{0}(0)=m_{2}(0)=1, \quad m_{1}(0)=\operatorname{dim} H^{1}(X, \mathbb{C}) .
$$

Since for surfaces of genus $g \geq 2$,

$$
H^{1}\left(S^{*} M, \mathbb{C}\right) \simeq H^{1}(M, \mathbb{C})
$$

it follows that the order of vanishing of ζ_{D} at 0 is

$$
m=-m_{0}(0)+m_{1}(0)-m_{2}(0)=- \text { Euler characteristic of } M=2 g-2
$$

Thanks for your attention!

