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First things first

70 corresponds to the totality of an evolution, an evolutionary
cycle being fully completed, according to Saint Augustin.

It’s official: you are a totally evolved creature, Pavel!
Greetings from the under-evolved, dear friend! Looking up to you!
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Related works by

S. Agmon, M. Aizenman & J. Schenker, M. Avellaneda &
F.-H. Lin, Y. Avron & B. Simon, M. Babillot, M. Birman &
T. Suslina, Y. Colin de Verdiere, A. Figotin, N. Filonov &
I. Krachkovski, C. Gerard, M. Gromov & M. Shubin, V. Lin, V. Lin
& Y. Pinchover, V. Lin & M. Zaidenberg, J. Moser & M. Struwe,
M. Murata & T. Tsuchida, S. Novikov, Y. Pinchover, R. Pinsky,
W. Woess

Peter KuchmentTexas A & M University Dispersions and spectra



Periodic operators
Dispersion relation and all that

Band-gap spectral structure
Analytic properties of Bloch and Fermi varieties

Spectral edges and extrema of dispersion.
Threshold effects

Content

Dispersion relations (=Bloch varieties) of periodic
operators.Band-gap structure of the spectrum.Fermi surfaces.

Analyticity of Bloch and Fermi Varieties.

Irreducibility and its role

Spectral edges and extrema: location and non-degeneracy.

Threshold effects (i.e., those depending upon spectral
structure at and near a spectral edge):

Condensed matter – effective masses.
Homogenization.
Green’s function behavior.
Liouville-Riemann-Roch theorems.
Impurity states.
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Periodic Schrödinger operator

Main example:
H = −∆ + V (x),

where V is Zn-periodic real function of appropriate class (e.g.,
V ∈ L∞(Rn)).
H -self-adjoint in L2(Rn) with domain H2(Rn).
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More general periodic elliptic operators

More generally, X 7→ M - normal covering with the deck group Zn

and compact base M.

X and M can be Riemannian manifolds, analytic manifolds,
graphs, or quantum graphs.
H - a periodic operator on X , elliptic, i.e. Fredholm on M.
Overdetermined problems: ∂-operator, Maxwell.
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Dispersion relation = Bloch variety

Bloch functions
u(x) = e ik·xp(x)

with p(x) being Zn-periodic, quasi-momentum k ∈ Rn.
Dispersion relation = Bloch variety =

{(k , λ) ∈ Rn+1 |Hu = λu, u 6= 0 Bloch solution, quasi-momentum k}

ComplexBloch variety =

{(k , λ) ∈ Cn+1 |Hu = λu, u 6= 0 Bloch solution, quasi-momentum k}

Peter KuchmentTexas A & M University Dispersions and spectra



Periodic operators
Dispersion relation and all that

Band-gap spectral structure
Analytic properties of Bloch and Fermi varieties

Spectral edges and extrema of dispersion.
Threshold effects

A picture
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Fermi surface

Fermi surface at the energy level λ = level set of dispersion
relation

:= {k ∈ Rn( or Cn) |Hu = λu, u 6= 0 Bloch sol’n, quasi-momentum k}

Fermi surface of Niobium

Peter KuchmentTexas A & M University Dispersions and spectra



Periodic operators
Dispersion relation and all that

Band-gap spectral structure
Analytic properties of Bloch and Fermi varieties

Spectral edges and extrema of dispersion.
Threshold effects

Dispersion branches (bands)

Dispersion relation is the graph of a multi-valued function
k 7→ λ(k).
Single-valued, continuous, piecewise analytic band functions

λ1(k) < λ2(k) ≤ λ3(k) ≤ ...

Peter KuchmentTexas A & M University Dispersions and spectra



Periodic operators
Dispersion relation and all that

Band-gap spectral structure
Analytic properties of Bloch and Fermi varieties

Spectral edges and extrema of dispersion.
Threshold effects

Spectrum

H =

⊕∫
B

H(k)dk.

The direct integral decomposition represents the operator as
a “pseudo-differential operator with the miltiple-valued
symbol λ(k)”
Theorem: The spectrum of H is equal to the range of λ(k), i.e.
to the projection of the Bloch variety onto the λ-axis.
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Band-gap structure

Range of λj(k) (a closed interval) - thejth spectral band Ij .

σ(H) =
⋃
j

Ij .

Band may overlap. They may also open unfilled spectral gaps.
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Analyticity

Theorem
The complex Bloch (Fermi) variety is a codimension 1 analytic
sub-variety of Cn+1 (Cn).
In fact, it is the set of all zeros of an entire function of some
exponential order.
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Bloch variety irreducibility

Conjecture For any periodic Schrödinger operator (or maybe more
general periodic elliptic operator of second order) the Complex
Bloch variety is irreducible.
• I.e., any small open piece of dispersion relation determines the
whole Bloch variety completely.
• Stronger than absolute continuty
• Holds in 1D, W. Kohn ’59, Avron & Simon ’78
• Proven in 2D by Knörrer and Trubowitz ’90
• Does not hold for higher order operators.
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Fermi variety irreducibility

Conjecture For any periodic Schrödinger operator (or maybe more
general periodic elliptic operator of second order) the Complex
Fermi variety is irreducible for almost all spectral levels.
• I.e., any its small open piece determines the whole
• Its role: Irreducibility of the Fermi surface at some level λ in the
continuous spectrum implies that localized perturbations cannot
create embedded eigenvalues at λ (P.K. and B. Vainberg ’98)
• Proven in 2D discrete case (Gieseker, Knörrer, and Trubowitz
’93 book). Easy to prove for separable potentials and some other
simple cases (P.K. and Vainberg).
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General understanding

• The direct integral decomposition represents the operator as a
“pseudo-differential operator with the miltiple-valued symbol λ(k)”
• The behaviour of wave packets with energy close to a value λ is
governed by the structure of the dispersion relation near this level.
• Near a parabolic extremum the behavior should be
“Laplacian-like”
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Local structure: Conic singularities

Graphene, etc.
Dirac cones (“Diabolic points”)

At the cone’s apex behaviour as of solutions of Dirac’s equation⇒
graphene marvels.
Wallace ’47 (discrete case), P. K. and Post ’7 (quantum graph
case), Fefferman and Weinstein ’12+ , Berkolaiko and Comech ’14.
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Spectral edges location

Spectral edges occur at some extrema of dispersion relation.
At which values of k can the band edges occur?
Frequent response: at some points of symmetry.

Disproved:
Harrison, P.K., Sobolev, Winn ’07
Exner, P.K., Winn ’10.
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Generic non-degeneracy?

Bad things that can happen:
the same extremal value attained by two or more band functions;
a non-isolated extremum of one band function;
isolated, but degenerate extremum.
Conjecture (stated by many): generically (with respect to the
parameters of the operator, say potential)
A: only a single band function reaches the extremal value.
B: the extremum is isolated.
C: the extremum is non=degenerate (i.e., of parabolic shape).
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What is known?

A proven by Klopp and Ralston ’00.
B proven for 2D Schrödinger, Filonov & Krachkovski, ’15.
Not just generic!
The whole conjecture proven for
• the bottom of the spectrum (Kirsch & Simon ’87)
• in 2D, small C∞ potentials, Y. Colin de Verdiere ’91
• Z2-periodic graphs with two atoms (vertices) per a unit cell, N.
Do, P.K., F. Sottile, ’14.
Transversality approaches???
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Why would one care?

“Threshold effects” (coined by Birman & Suslina):
Effective masses of electrons
Homogenization
Liouville and Liouville-Riemann-Roch theorems
Green’s function asymptotics
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Green’s function asymptotics at a generic edge

Theorem (P.K. and A. Raich, ’12) Let n ≥ 3, R−ε = (L + ε)−1 for
0 < ε� 1 – resolvent of H near the spectral edge λ = 0.
Let also R : L2

comp(Rn) 7→ L2
loc(Rn) be such, that ∀

φ, ψ ∈ L2
comp(Rd),

〈R−εφψ〉 = lim
ε→0
〈Rφψ〉.

Then, the Schwartz kernel G (x , y) of R (the Green’s function of
H), has the following asymptotics when |x − y | → ∞:

G (x , y) =
π−n/2Γ( n−2

2
)e i(x−y)·k0

2(detH)1/2|H−1/2(x−y)|n−2

ϕ(k0,x)ϕ(k0,y)
‖ϕ(k0)‖2

L2(T)

(
1 + O( 1

|x−y |)
)

+ r(x , y),

where r(x , y) = O(|x − y |−N) for any N > 0, H - Hessian of the
dispersion relation at k0.
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Green’s function asymptotics inside the gap

Theorem (Minh Kha, P.K., A. Reich, ’15)
For λ < 0, |λ| � 1, Green’s function Gλ of H admits the following
asymptotics as |x − y | → ∞:

Gλ(x , y)

= e(x−y)·(ik0−βs )

(2π|x−y |)(n−1)/2 ×
|∇E(βs)|(n−3)/2

det (−PsHessE(βs)Ps)1/2 ×
φk0+iβs (x)φk0−iβs (y)

(φk0+iβs ,φk0−iβs )L2(T)

+e(y−x)·βs r(x , y).

Here s = (x − y)/|x − y |, Ps – orthogonal projection from Rn onto
the tangent space at the point s of the unit sphere Sn−1, and
r(x , y) = O(|x − y |−n/2).
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Previously known and generalizations

• Both results had been known at (and near) the bottom of the
spectrum: M. Babillot ’97, 98, M. Murata & T. Tsuchida ’03, 06,
W. Woess ’00.
• Generalization of both to abelian coverings, Minh Kha ’15. Some
quirks of this case.
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Lioville theorems: assumptions and notations

λ = 0
VN(H) := {u |Hu = 0, |u(x) ≤ C (1 + |x |)N}
FH := {k | exists U 6= 0,H(k)u = λu} – Fermi surface.
dimVN(H) <∞ S. T. Yau ’75. Colding & Minicozzi ’97

Peter KuchmentTexas A & M University Dispersions and spectra



Periodic operators
Dispersion relation and all that

Band-gap spectral structure
Analytic properties of Bloch and Fermi varieties

Spectral edges and extrema of dispersion.
Threshold effects

Liouville theorems, P.K. & Pinchover, ’01, ’07

P.K. & Pinchover, ’01, ’07, partial result by P. Li
Triggered by work s of Avellaneda & F.-H. Lin and J. Moser & M.
Struwe ’92
Theorem (Liouville)
The following statements are equivalent:

1 dimVN(H) <∞ for some N ≥ 0

2 dimVN(H) <∞ for all N ≥ 0

3 #FH <∞
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Overdetermined

This holds for overdetermined elliptic systems as well. E.g.,
Theorem (holomorphic Liouville)
On abelian covering of a compact complex manifold
dimVN(∂) <∞ for all N ≥ 0.
Proof:
Indeed, if u(γz) = e ik·γu(z), then |u(z)| is periodic and thus, by
maximum principle, u(z) constant. Hence, F∂ = {0}.
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Dimension count

At edge of the spectrum – 0 is a simple eigenvalue and FL = k0.
Taylor expansion λ(k) =

∑
l≥l0

λl(k − k0).

Theorem (quantitative Liouville)

dimVN(L) =

(
n + N
N

)
−
(

n + N − l0
N − l0

)
.
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Liouville-Riemann-Roch theorem

Gromov & Shubin ’92 – ’94 - Riemann-Roch theorems for
elliptic operators with prescribed compact divisor of
zeros/poles.

Minh Kha & P.K. ’16 - Liouville-Riemann-Roch theorems for
elliptic operators on co-compact abelian coverings with a
compact divisor.
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A survey

More detailed survey in
P. K., An overview of periodic elliptic operators, Bulletin of the
AMS, 53 (2016), No. 3, 343–414.
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Thanks

Till 120, Pavel!

Thank you
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