Quasiperiodic Schrodinger operators: sharp arithmetic spectral transitions and universal hierarchical structure of eigenfunctions

S. Jitomirskaya

Atlanta, October 10, 2016

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

$$v(\theta) = 2\cos 2\pi(\theta)$$
, α irrational,

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta)$, α irrational, Tight-binding model of 2D Bloch electrons in magnetic fields

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta)$, α irrational, Tight-binding model of 2D Bloch electrons in magnetic fields

• First introduced by R. Peierls in 1933

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta)$, α irrational, Tight-binding model of 2D Bloch electrons in magnetic fields

- First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)

$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta)$, α irrational, Tight-binding model of 2D Bloch electrons in magnetic fields

- First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)
- Is called Harper's model

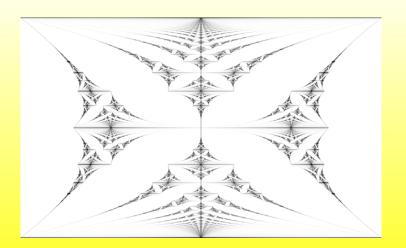
$$(H_{\lambda,\alpha,\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

 $v(\theta) = 2\cos 2\pi(\theta)$, α irrational,

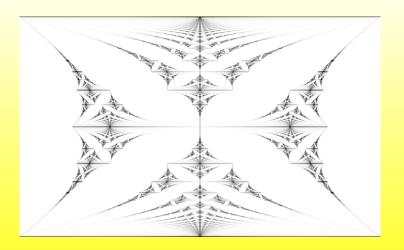
Tight-binding model of 2D Bloch electrons in magnetic fields

- First introduced by R. Peierls in 1933
- Further studied by a Ph.D. student of Peierls, P.G. Harper (1955)
- Is called Harper's model
- ullet With a choice of Landau gauge effectively reduces to $h_{ heta}$
- α is a dimensionless parameter equal to the ratio of flux through a lattice cell to one flux quantum.

Hofstadter butterfly

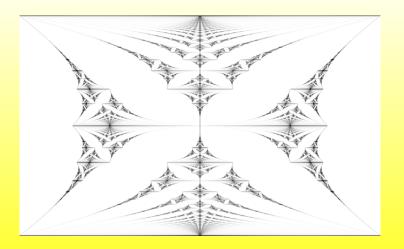


Hofstadter butterfly



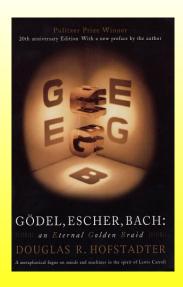
Gregory Wannier to Lars Onsager: "It looks much more complicated than I ever imagined it to be"

Hofstadter butterfly



Gregory Wannier to Lars Onsager: "It looks much more complicated than I ever imagined it to be"

David Jennings described it as a picture of God



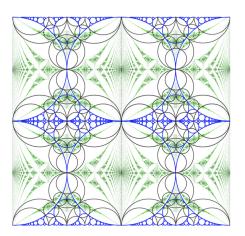
Quasiperiodic Schrodinger operators: sharp arithmetic spectral

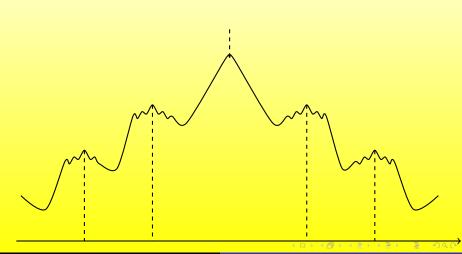
Butterfly in the Quantum World

The story of the most fascinating quantum fractal

Indubala I Satija

with contributions by Douglas Hofstadter





Predicted by M. Azbel (1964)

Spectrum: only known that the spectrum is a Cantor set (Ten Martini problem)

Predicted by M. Azbel (1964)

Spectrum: only known that the spectrum is a Cantor set (Ten

Martini problem)

Eigenfunctions:

History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al)

Sinai, Hellffer-Sjostrand, Buslaev-Fedotov

Predicted by M. Azbel (1964)

Spectrum: only known that the spectrum is a Cantor set (Ten

Martini problem)

Eigenfunctions:

History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al)

Sinai, Hellffer-Sjostrand, Buslaev-Fedotov

remained a challenge even at the physics level

Predicted by M. Azbel (1964)

Spectrum: only known that the spectrum is a Cantor set (Ten

Martini problem)

Eigenfunctions:

History: Bethe Ansatz solutions (Wiegmann, Zabrodin, et al)

Sinai, Hellffer-Sjostrand, Buslaev-Fedotov remained a challenge even at the physics level

Today: universal self-similar exponential structure of eigenfunctions

throughout the entire localization regime.

Arithmetic spectral transitions

1D Quasiperiodic operators:

$$(h_{\theta}\Psi)_{n} = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_{n}$$

Arithmetic spectral transitions

1D Quasiperiodic operators:

$$(h_{\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

Transitions in the coupling λ

- originally approached by KAM (Dinaburg, Sinai, Bellissard, Frohlich-Spencer-Wittwer, Eliasson)
- nonperturbative methods (SJ, Bourgain-Goldstein for L>0; Last,SJ,Avila for L=0) reduced the transition to the transition in the Lyapunov exponent (for analytic v): L(E)>0 implies pp spectrum for a.e. α,θ $L(E+i\epsilon)=0,\epsilon>0$ implies pure ac spectrum for all α,θ

Arithmetic spectral transitions

1D Quasiperiodic operators:

$$(h_{\theta}\Psi)_n = \Psi_{n+1} + \Psi_{n-1} + \lambda \nu(\theta + n\alpha)\Psi_n$$

Transitions in the coupling λ

- originally approached by KAM (Dinaburg, Sinai, Bellissard, Frohlich-Spencer-Wittwer, Eliasson)
- nonperturbative methods (SJ, Bourgain-Goldstein for L>0; Last,SJ,Avila for L=0) reduced the transition to the transition in the Lyapunov exponent (for analytic v): L(E)>0 implies pp spectrum for a.e. α,θ $L(E+i\epsilon)=0,\epsilon>0$ implies pure ac spectrum for all α,θ

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$:

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$: transfer matrix:

$$A^{E}(\theta) := \begin{pmatrix} E - \lambda v(\theta) & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}$$
$$A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)$$

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$: transfer matrix:

$$A^{E}(\theta) := \begin{pmatrix} E - \lambda v(\theta) & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}$$
$$A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)$$

The Lyapunov exponent (LE):

$$L(\alpha, E) := \lim_{n \to \infty} \frac{1}{n} \int_{\mathbb{T}} \log ||A_{(n)}^{E}(x)|| dx$$
,

Given $E \in \mathbb{R}$ and $\theta \in \mathbb{T}$, solve $H_{\lambda,\alpha,\theta}\psi = E\psi$ over $\mathbb{C}^{\mathbb{Z}}$: transfer matrix:

$$A^{E}(\theta) := \begin{pmatrix} E - \lambda v(\theta) & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = A_n^E(\alpha, \theta) \begin{pmatrix} \psi_0 \\ \psi_{-1} \end{pmatrix}$$
$$A_n^E(\alpha, \theta) := A(\theta + \alpha(n-1)) \dots A(\theta)$$

The Lyapunov exponent (LE):

$$L(\alpha, E) := \lim_{n \to \infty} \frac{1}{n} \int_{\mathbb{T}} \log ||A_{(n)}^{E}(x)|| dx$$
,

Arithmetic transitions in the supercritical (L>0) regime

Small denominators - resonances - $(v(\theta + k\alpha) - v(\theta + \ell\alpha))^{-1}$ are in competition with $e^{L(E)|\ell-k|}$.

L very large compared to the resonance strength leads to more localization

L small compared to the resonance strength leads to delocalization

Exponential strength of a resonance:

$$\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} - \frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 α is Diophantine if $\beta(\alpha) = 0$ θ is α -Diophantine if $\delta(\alpha) = 0$

Exponential strength of a resonance:

$$\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} - \frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 α is Diophantine if $\beta(\alpha)=0$ θ is α -Diophantine if $\delta(\alpha)=0$ For the almost Mathieu, on the spectrum $L(E)=\max(0,\ln\lambda)$ (Bourgain-SJ, 2001).

Exponential strength of a resonance:

$$\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} - \frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 α is Diophantine if $\beta(\alpha) = 0$

 θ is α -Diophantine if $\delta(\alpha) = 0$

For the almost Mathieu, on the spectrum $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

 $\lambda < 1 \rightarrow$ pure ac spectrum (Dinaburg-Sinai 76, Aubry-Andre 80, Bellissard-Lima-Testard, Eliasson,..., Avila 2008)

Exponential strength of a resonance:

$$\beta(\alpha) := \limsup_{n \to \infty} -\frac{\ln ||n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

and

$$\delta(\alpha,\theta) := \limsup_{n \to \infty} - \frac{\ln ||2\theta + n\alpha||_{\mathbb{R}/\mathbb{Z}}}{|n|}$$

 α is Diophantine if $\beta(\alpha) = 0$

 θ is α -Diophantine if $\delta(\alpha) = 0$

For the almost Mathieu, on the spectrum $L(E) = \max(0, \ln \lambda)$ (Bourgain-SJ, 2001).

 $\lambda < 1 \rightarrow$ pure ac spectrum (Dinaburg-Sinai 76, Aubry-Andre 80, Bellissard-Lima-Testard, Eliasson,..., Avila 2008)

 $\lambda > 1
ightarrow$ no ac spectrum (Ishii-Kotani-Pastur)

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha,\theta)}$,
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point spectrum) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha,\theta)}$,
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point spectrum) for $|\lambda|>e^{\delta(\alpha,\theta)}$.

```
(all \theta, Diophantine \alpha)
```

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha,\theta)}$,
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point spectrum) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

- If $\delta(\alpha, \theta) = 0$, then $L(E) = \beta(\alpha)$ is the transition line.
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $L(E) < \beta(\alpha)$
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization for $L(E) > \beta(\alpha)$.

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha,\theta)}$,
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point spectrum) for $|\lambda| > e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

- If $\delta(\alpha, \theta) = 0$, then $L(E) = \beta(\alpha)$ is the transition line.
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $L(E) < \beta(\alpha)$
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization for $L(E) > \beta(\alpha)$.

(all α , Diophantine θ)

sc spectrum for $\beta=\infty$ proved in Gordon, Avron-Simon (82), and for $\delta=\infty$ in SJ-Simon (94)

Conjecture for the sharp transition (1994):

- If $\beta(\alpha) = 0$, then $\lambda_0 = e^{\delta(\alpha, \theta)}$ is the transition line:
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $|\lambda| < e^{\delta(\alpha,\theta)}$,
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization (stronger than pure point spectrum) for $|\lambda|>e^{\delta(\alpha,\theta)}$.

(all θ , Diophantine α)

- If $\delta(\alpha, \theta) = 0$, then $L(E) = \beta(\alpha)$ is the transition line.
 - $H_{\lambda,\alpha,\theta}$ has purely singular continuous spectrum for $L(E) < \beta(\alpha)$
 - $H_{\lambda,\alpha,\theta}$ has Anderson localization for $L(E) > \beta(\alpha)$.

(all α , Diophantine θ)

sc spectrum for $\beta=\infty$ proved in Gordon, Avron-Simon (82), and for $\delta=\infty$ in SJ-Simon (94) pp spectrum for $\beta=\delta=0$ proved in SJ (99).

Asymptotics in the pp regime

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi=E\phi$.

Asymptotics in the pp regime

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi=E\phi$. Let $U(k)=\begin{pmatrix}\phi(k)\\\phi(k-1)\end{pmatrix}$.

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi=E\phi$. Let $U(k)=\begin{pmatrix}\phi(k)\\\phi(k-1)\end{pmatrix}$.

Theorem

(SJ-W.Liu, 16)

There exist explicit universal functions f, g s.t. throughout the entire predicted pure point regime, for any generalized eigenfunction ϕ and any $\varepsilon > 0$, there exists K such that for any $|k| \geq K$, U(k) and A_k satisfy

We say ϕ is a generalized eigenfunction if it is a polynomially bounded solution of $H_{\lambda,\alpha,\theta}\phi=E\phi$. Let $U(k)=\begin{pmatrix}\phi(k)\\\phi(k-1)\end{pmatrix}$.

Theorem

(SJ-W.Liu, 16)

There exist explicit universal functions f, g s.t. throughout the entire predicted pure point regime, for any generalized eigenfunction ϕ and any $\varepsilon > 0$, there exists K such that for any $|k| \geq K$, U(k) and A_k satisfy

$$f(|k|)e^{-\varepsilon|k|} \le ||U(k)|| \le f(|k|)e^{\varepsilon|k|},$$

and

$$g(|k|)e^{-\varepsilon|k|} \le ||A_k|| \le g(|k|)e^{\varepsilon|k|}.$$

◆ロト 4周 × 4 至 ト 4 頁 * のQ ○

(all α , Diophantine θ) Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \le k < \frac{q_{n+1}}{2}$, define explicit functions f(k), g(k) as follows(depend on α through the sequence of q_n):

(all α , Diophantine θ) Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \le k < \frac{q_{n+1}}{2}$, define explicit functions f(k), g(k) as follows(depend on α through the sequence of q_n): Case 1: $g_{n+1}^{\frac{8}{9}} \ge \frac{q_n}{2}$ or $k \ge q_n$.

(all α , Diophantine θ)

Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \le k < \frac{q_{n+1}}{2}$, define explicit functions f(k), g(k) as follows(depend on α through the sequence of q_n):

Case 1:
$$q_{n+1}^{\frac{8}{9}} \ge \frac{q_n}{2}$$
 or $k \ge q_n$.
If $\ell q_n \le k < (\ell+1)q_n$ with $\ell \ge 1$, set

$$f(k) = e^{-|k-\ell q_n| \ln |\lambda|} \bar{r}_{\ell}^n + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \bar{r}_{\ell+1}^n,$$

and

$$g(k) = e^{-|k-\ell q_n| \ln |\lambda|} \frac{q_{n+1}}{\overline{r}_{\ell}^n} + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \frac{q_{n+1}}{\overline{r}_{\ell+1}^n},$$

where for $\ell \geq 1$,

$$\bar{r}_{\ell}^{n} = e^{-\left(\ln|\lambda| - \frac{\ln q_{n+1}}{q_n} + \frac{\ln \ell}{q_n}\right)\ell q_n}.$$

(all α , Diophantine θ)

Let $\frac{p_n}{q_n}$ be the continued fraction expansion of α . For any $\frac{q_n}{2} \le k < \frac{q_{n+1}}{2}$, define explicit functions f(k), g(k) as follows(depend on α through the sequence of q_n):

Case 1:
$$q_{n+1}^{\frac{8}{9}} \ge \frac{q_n}{2}$$
 or $k \ge q_n$.
If $\ell q_n \le k < (\ell+1)q_n$ with $\ell \ge 1$, set

$$f(k) = e^{-|k-\ell q_n| \ln |\lambda|} \bar{r}_{\ell}^n + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \bar{r}_{\ell+1}^n,$$

and

$$g(k) = e^{-|k-\ell q_n| \ln |\lambda|} \frac{q_{n+1}}{\overline{r}_{\ell}^n} + e^{-|k-(\ell+1)q_n| \ln |\lambda|} \frac{q_{n+1}}{\overline{r}_{\ell+1}^n},$$

where for $\ell \geq 1$,

$$\bar{r}_{\ell}^{n} = e^{-\left(\ln|\lambda| - \frac{\ln q_{n+1}}{q_n} + \frac{\ln \ell}{q_n}\right)\ell q_n}.$$

If $\frac{q_n}{2} \le k < q_n$, set

$$f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,$$

and

$$g(k) = e^{k \ln |\lambda|}.$$

If $\frac{q_n}{2} \le k < q_n$, set

$$f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,$$

and

$$g(k) = e^{k \ln |\lambda|}.$$

Case 2. $q_{n+1}^{\frac{8}{9}} < \frac{q_n}{2}$ and $\frac{q_n}{2} \le k \le \min\{q_n, \frac{q_{n+1}}{2}\}$. Set

$$f(k) = e^{-k \ln |\lambda|},$$

and

$$g(k) = e^{k \ln |\lambda|}.$$

If $\frac{q_n}{2} \le k < q_n$, set

$$f(k) = e^{-k \ln |\lambda|} + e^{-|k-q_n| \ln |\lambda|} \overline{r}_1^n,$$

and

$$g(k) = e^{k \ln |\lambda|}.$$

Case 2. $q_{n+1}^{\frac{8}{9}} < \frac{q_n}{2}$ and $\frac{q_n}{2} \le k \le \min\{q_n, \frac{q_{n+1}}{2}\}$. Set

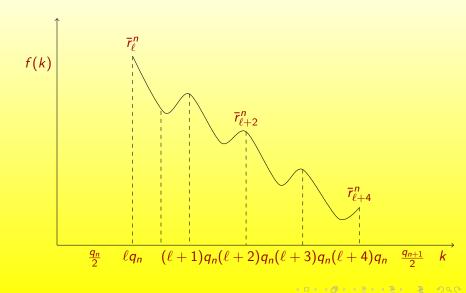
$$f(k) = e^{-k \ln |\lambda|},$$

and

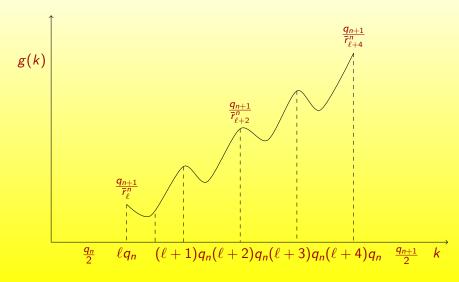
$$g(k) = e^{k \ln |\lambda|}$$
.

Note: f(k) decays exponentially and g(k) grows exponentially. However the decay rate and growth rate are not always the same.

The behavior of f(k)



The behavior of g(k)



Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Singular continuous spectrum holds for

I.
$$\lambda > e^{\beta(\alpha)}$$
 (Avila-You-Zhou, 15)
II. $\lambda > e^{\delta(\alpha,\theta)}$ (SJ-Liu, 16)

II.
$$\lambda > e^{\delta(lpha, heta)}$$
 (SJ-Liu, 16)

Arithmetic spectral transition

Corollary

Anderson localization holds throughout the entire conjectured pure point regime.

Singular continuous spectrum holds for

I.
$$\lambda > e^{\beta(\alpha)}$$
 (Avila-You-Zhou, 15)

II.
$$\lambda > e^{\delta(\alpha,\theta)}$$
 (SJ-Liu, 16)

Corollary

The arithmetic spectral transition conjecture holds as stated.

Localization Method:

• Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha, \theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha, \theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha, \theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Reducibility Method:

• Avila-You-Zhou proved that there exists a full Lebesgue measure set S such that for $\theta \in S$, $H_{\lambda,\alpha,\theta}$ satisfies AL if $|\lambda| > e^{\beta(\alpha)}$, thus proving the transition line at $|\lambda| > e^{\beta(\alpha)}$ for a.e. θ . However, S can not be described in their proof.

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha, \theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Reducibility Method:

- Avila-You-Zhou proved that there exists a full Lebesgue measure set S such that for $\theta \in S$, $H_{\lambda,\alpha,\theta}$ satisfies AL if $|\lambda| > e^{\beta(\alpha)}$, thus proving the transition line at $|\lambda| > e^{\beta(\alpha)}$ for a.e. θ . However, S can not be described in their proof.
- SJ-Kachkovskiy: alternative argument, still without an arithmetic condition

Localization Method:

- Avila-SJ: if $|\lambda| > e^{\frac{16}{9}\beta(\alpha)}$ and $\delta(\alpha, \theta) = 0$, then $H_{\lambda,\alpha,\theta}$ satisfies AL (Ten Martini Problem)
- Liu-Yuan extended to the regime $|\lambda| > e^{\frac{3}{2}\beta(\alpha)}$.

Reducibility Method:

- Avila-You-Zhou proved that there exists a full Lebesgue measure set S such that for $\theta \in S$, $H_{\lambda,\alpha,\theta}$ satisfies AL if $|\lambda| > e^{\beta(\alpha)}$, thus proving the transition line at $|\lambda| > e^{\beta(\alpha)}$ for a.e. θ . However, S can not be described in their proof.
- SJ-Kachkovskiy: alternative argument, still without an arithmetic condition

Local *i*-maxima

Local *j*-maximum is a local maximum on a segment $|I| \sim q_j$. A local *j*-maximum k_0 is nonresonant if

$$||2\theta+(2k_0+k)\alpha||_{\mathbb{R}/\mathbb{Z}}>\frac{\kappa}{q_{j-1}^{\nu}},$$

for all $|k| \leq 2q_{j-1}$ and

$$||2\theta + (2k_0 + k)\alpha||_{\mathbb{R}/\mathbb{Z}} > \frac{\kappa}{|k|^{\nu}}, \tag{0.1}$$

for all $2q_{j-1} < |k| \le 2q_j$.

A local j-maximum is strongly nonresonant if

$$||2\theta + (2k_0 + k)\alpha||_{\mathbb{R}/\mathbb{Z}} > \frac{\kappa}{|k|^{\nu}}, \tag{0.2}$$

for all $0 < |k| \le 2q_i$.

Universality of behavior at all (strongly) nonresonant local maxima:

Theorem

(SJ-W.Liu, 16) Suppose k_0 is a local j-maximum. If k_0 is nonresonant, then

$$f(|s|)e^{-\varepsilon|s|} \le \frac{||U(k_0+s)||}{||U(k_0)||} \le f(|s|)e^{\varepsilon|s|},$$
 (0.3)

for all $2s \in I$, $|s| > \frac{q_{j-1}}{2}$.

If k_0 is strongly nonresonant, then

$$f(|s|)e^{-\varepsilon|s|} \le \frac{||U(k_0+s)||}{||U(k_0)||} \le f(|s|)e^{\varepsilon|s|},$$
 (0.4)

for all $2s \in I$.

Universal hierarchical structure

All α , Diophantine θ , pp regime. Let k_0 be the global maximum

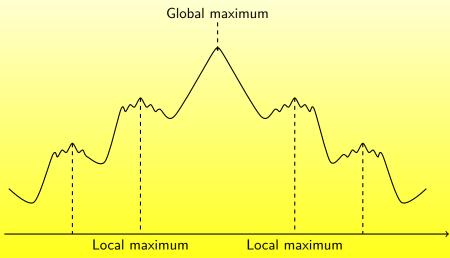
$\mathsf{Theorem}$

(SJ-W. Liu, 16) There exists $\hat{n}_0(\alpha, \lambda, \varsigma, \epsilon) < \infty$ such that for any $k \geq \hat{n}_0, \, n_{j-k} \geq \hat{n}_0 + k$, and $0 < a_{n_i} < e^{\varsigma \ln |\lambda| q_{n_i}}, \, i = j-k, \ldots, j$, for all $0 \leq s \leq k$ there exists a local n_{j-s} -maximum $b_{a_{n_j}, a_{n_{j-1}}, \ldots, a_{n_{j-s}}}$ such that the following holds: I. $|b_{a_{n_j}} - (k_0 + a_{n_j} q_{n_j})| \leq q_{\hat{n}_0 + 1}$, III. For $s \leq k$, $|b_{a_{n_j}, \ldots, a_{n_{j-s}}} - (b_{a_{n_j}, \ldots, a_{n_{j-s} + 1}} + a_{n_{j-s}} q_{n_{j-s}})| \leq q_{\hat{n}_0 + s + 1}$. III. If $q_{\hat{n}_0 + k} \leq |(x - b_{a_{n_j}, a_{n_{j-1}}, \ldots, a_{n_{j-k}}}| \leq cq_{n_{j-k}}$, then for $s = 0, 1, \ldots, k$.

$$f(x_s)e^{-\varepsilon|x_s|} \le \frac{||U(x)||}{||U(b_{a_{n_j},a_{n_{j-1}},...,a_{n_{j-s}}})||} \le f(x_s)e^{\varepsilon|x_s|},$$

Moreover, every local n_{j-s} -maximum on the interval $b_{a_{n_j},a_{n_{j-1}},\dots,a_{n_{j-s}+1}} + [-e^{\epsilon \ln \lambda q_{n_j-s}}, e^{\epsilon \ln \lambda q_{n_j-s}}]$ is of the form $b_{a_{n_j},a_{n_{j-1}},\dots,a_{n_{j-s}}}$ for some $a_{n_{j-s}}$.

Universal hierarchical structure of the eigenfunctions



Universal reflexive-hierarchical structure

Theorem

(SJ-W. Liu,16) For Diophantine α and all θ in the pure point regime there exists a hierarchical structure of local maxima as above, such that

$$f((-1)^{s+1}x_s)e^{-\varepsilon|x_s|} \leq \frac{||U(x_s)||}{||U(b_{K_j,K_{j-1},...,K_{j-s}})||} \leq f((-1)^{s+1}x_s)e^{\varepsilon|x_s|},$$

where $x_s = x - b_{K_i, K_{i-1}, ..., K_{i-s}}$.

Further corollaries

Corollary

Let $\psi(k)$ be any solution to $H_{\lambda,\alpha,\theta}\psi=E\psi$ that is linearly independent with respect to $\phi(k)$. Let $\bar{U}(k)=\begin{pmatrix} \psi(k) \\ \psi(k-1) \end{pmatrix}$, then

$$g(|k|)e^{-\varepsilon|k|} \le ||\bar{U}(k)|| \le g(|k|)e^{\varepsilon|k|}.$$

Let $0 \le \delta_k \le \frac{\pi}{2}$ be the angle between vectors U(k) and $\bar{U}(k)$.

Corollary

We have

$$\limsup_{k\to\infty}\frac{\ln\delta_k}{k}=0,$$

and

$$\liminf_{k \to \infty} \frac{\ln \delta_k}{k} = -\beta.$$

Corollary

We have

i)

$$\limsup_{k\to\infty}\frac{\ln||A_k||}{k}=\limsup_{k\to\infty}\frac{\ln||\bar{U}(k)||}{k}=\ln|\lambda|,$$

ii)

$$\liminf_{k\to\infty} \frac{\ln||A_k||}{k} = \liminf_{k\to\infty} \frac{\ln||\bar{U}(k)||}{k} = \ln|\lambda| - \beta.$$

iii) Outside an explicit sequence of lower density zero,

$$\lim_{k\to\infty} \frac{\ln||A_k||}{k} = \lim_{k\to\infty} \frac{\ln||\bar{U}(k)||}{k} = \ln|\lambda|.$$

Corollary

We have

- i) $\limsup_{k\to\infty} \frac{-\ln||U(k)||}{k} = \ln|\lambda|,$
- ii) $\liminf_{k\to\infty} \frac{-\ln||U(k)||}{k} = \ln|\lambda| \beta.$
- iii) There is an explicit sequence of upper density $1-\frac{1}{2}\frac{\beta}{\ln|\lambda|}$, along which

$$\lim_{k\to\infty}\frac{-\ln||U(k)||}{k}=\ln|\lambda|.$$

iv) There is an explicit sequence of upper density $\frac{1}{2} \frac{\beta}{\ln |\lambda|}$, along which

$$\limsup_{k\to\infty}\frac{-\ln||U(k)||}{k}<\ln|\lambda|.$$

Further applications

- Upper bounds on fractal dimensions of spectral measures and quantum dynamics for trigonometric polynomials (SJ-W.Liu-S.Tcheremchantzev, SJ-W.Liu).
- The exact rate for exponential dynamical localization in expectation for the Diophantine case (SJ-H.Krüger-W.Liu).
 The first result of its kind, for any model.
- The same universal asymptotics of eigenfunctions for the Maryland Model (R. Han-SJ-F.Yang).

Key ideas of the proof

Resonant points (small divisors): $k: ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$ or $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$ is small.

Key ideas of the proof

Resonant points (small divisors): $k: ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$ or $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$ is small.

 New way to deal with resonant points in the positive Lyapunov regime (supercritical regime)

Key ideas of the proof

Resonant points (small divisors): $k : ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$ or $||2\theta + k\alpha||_{\mathbb{R}/\mathbb{Z}}$ is small.

- New way to deal with resonant points in the positive Lyapunov regime (supercritical regime)
- Develop Gordon and palindromic methods to study the trace of transfer matrices to obtain lower bounds on solutions Gordon potential (periodicity): $|V(j+q_n)-V(j)|$ is small (control by $||q_n\alpha|| \simeq e^{-\beta(\alpha)q_n}$) palindromic potential (symmetry): |V(k-j)-V(j)| is small (control by $||2\theta+k\alpha|| \simeq e^{-\delta(\alpha,\theta)|k|}$)
- Bootstrap starting around the (local) maxima leads to effective estimates
- Reverse induction proof that local j-1-maxima are close to aq_{j-1} shifts of the local j-maxima, up to a constant scale
- Deduce that all the local maxima are (strongly) non-resonant and apply reverse induction

Assume E is a generalized eigenvalue and ϕ is the associated generalized eigenfunction $(|\phi(n)| < 1 + |n|)$. Let φ be another solution of Hu = Eu. Let $U(k) = \begin{pmatrix} \phi(k) \\ \phi(k-1) \end{pmatrix}$ and

$$\bar{U}(k) = \begin{pmatrix} \varphi(k) \\ \varphi(k-1) \end{pmatrix}.$$

Step 1: Sharp estimates for the non-resonant points.

- $||U(k)|| \simeq e^{-\ln \lambda |k-k_i|} ||U(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|} ||U(k_{i+1})||$
- $\bullet \ ||\bar{\textit{U}}(\textit{k})|| \simeq e^{-\ln \lambda |\textit{k}-\textit{k}_{\textit{i}}|}||\bar{\textit{U}}(\textit{k}_{\textit{i}})|| + e^{-\ln \lambda |\textit{k}-\textit{k}_{\textit{i}+1}|}||\bar{\textit{U}}(\textit{k}_{\textit{i}+1})||$

where k_i is the resonant point and $k \in [k_i, k_{i+1}]$.

Assume E is a generalized eigenvalue and ϕ is the associated generalized eigenfunction $(|\phi(n)|<1+|n|)$. Let φ be another solution of Hu=Eu. Let $U(k)=\begin{pmatrix} \phi(k)\\ \phi(k-1) \end{pmatrix}$ and

$$\bar{U}(k) = \begin{pmatrix} \varphi(k) \\ \varphi(k-1) \end{pmatrix}.$$

Step 1:Sharp estimates for the non-resonant points.

•
$$||U(k)|| \simeq e^{-\ln \lambda |k-k_i|} ||U(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|} ||U(k_{i+1})||$$

•
$$||\bar{U}(k)|| \simeq e^{-\ln \lambda |k-k_i|} ||\bar{U}(k_i)|| + e^{-\ln \lambda |k-k_{i+1}|} ||\bar{U}(k_{i+1})||$$

where k_i is the resonant point and $k \in [k_i, k_{i+1}]$.

Step 2: Sharp estimates for the resonant points.

•
$$||U(k_{i+1})|| \simeq e^{-c(k_i,k_{i+1})|k_{i+1}-k_i|}||U(k_i)||$$

•
$$||\bar{U}(k_{i+1})|| \simeq e^{c'(k_i,k_{i+1})|k_{i+1}-k_i|}||\bar{U}(k_i)||$$

where $c(k_i, k_{i+1}), c'(k_i, k_{i+1})$ can be given explicitly.

Current quasiperiodic preprints

Almost Mathieu operator:

- Avila-You-Zhou: sharp transition in α between pp and sc
- ullet Avila-You-Zhou: dry Ten Martini, non-critical, all lpha
- Shamis-Last, Krasovsky, SJ- S. Zhang: gap size/dimension results for the critical case
- Avila-SJ-Zhou: critical line $\lambda = e^{\beta}$
- Damanik-Goldstein-Schlag-Voda: homogeneous spectrum, Diophantine α
- W. Liu-SJ: sharp transitions in α and θ and universal (reflective) hierarchical structure

Unitary almost Mathieu:

Fillman-Ong-Z. Zhang: complete a.e. spectral description

Current quasiperiodic preprints

Extended Harper's model:

- Avila-SJ-Marx: complete spectral description in the coupling phase space (+Erdos-Szekeres conjecture!)
- R. Han: an alternative argument
- R. Han-J: sharp transition in α between pp and sc spectrum in the positive Lyapunov exponent regime
- R. Han: dry Ten Martini (non-critical Diophantine)

General 1-frequency quasiperiodic:

analytic: SJ- S. Zhang: sharp arithmetic criterion for full spectral dimensionality (quasiballistic motion)

R. Han-SJ: sharp topological criterion for dual reducibility to imply localization

Damanik-Goldstein-Schlag-Voda: homogeneous spectrum, supercritical

monotone: SJ-Kachkovskiy: *all* coupling localization **meromorphic**: SJ-Yang: sharp criterion for sc spectrum.

Current quasiperiodic preprints

Maryland model:

W. Liu-SJ: complete arithmetic spectral transitions for all λ, α, θ

W. Liu: surface Maryland model

SJ-Yang: a constructive proof of localization

General Multi-frequency:

- R. Han-SJ: localization-type results with arithmetic conditions (general zero entropy dynamics; including the skew shift)
- R. Han-Yang: generic continuous spectrum
- Hou-Wang-Zhou: ac spectrum for Liouville (presence)
- Avila-SJ: ac spectrum for Liouville (absence)

Deift's problem (almost periodicity of KdV solutions with almost periodic initial data) :

Binder-Damanik-Goldstein-Lukic: a solution under certain conditions.

