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Overview: Motivations and Setting

Motivation: understand charge transport in interacting systems

Setting: interacting electrons on the honeycomb lattice.
Why the honeycomb lattice?

1 Interest comes from graphene and graphene-like materials ⇒
peculiar transport properties, growing technological applications

2 Interacting graphene is accessible to rigorous analysis ⇒
benchmarks for the theory of interacting quantum transport

Model: Haldane-Hubbard, simplest interacting Chern insulator.
Several approximate and numerical results available.
Very few (if none) rigorous results.
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Overview: Results

Results: at weak coupling, we construct the topological phase
diagram of the Haldane-Hubbard model.

In particular:
1 we compute the dressed critical line
2 we construct the critical theory on the critical line
3 we prove quantization of Hall conductivity outside the critical line
4 we prove quantization of longitudinal conductivity on the critical line

Method: constructive Renormalization Group +
+ lattice symmetries + Ward Identities + Schwinger-Dyson
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Graphene

Graphene is a 2D allotrope of carbon: single layer of graphite.

First isolated by Geim and Novoselov in 2004 (Nobel prize, 2010).

Graphene and graphene-like materials have unusual, and remarkable,
mechanical and electronic transport properties.

Here we shall focus on its transport properties.
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Graphene

Peculiar transport properties due to its unusual band structure:

at half-filling the Fermi surface degenerates into two Fermi points

Low energy excitations: 2D massless Dirac fermions (v ' c/300) ⇒
‘semi-metallic’ QED-like behavior at non-relativistic energies
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Minimal conductivity

Signatures of the relativistic nature of quasi-particles:

1 Minimal conductivity at zero charge carriers density.
Measurable at T = 20o C from t(ω) = 1

(1+2πσ(ω)/c)2

For clean samples and
kBT � }ω � bandwidth,

σ(ω) = σ0 =
π

2

e2

h
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Anomalous QHE

2 Constant transverse magnetic field: anomalous IQHE.
Shifted plateaus: σ12 = 4 e

2

h (N + 1
2):

Observable at T = 20o.

At low temperatures:
plateaus measured at
∼ 5× 10−11 precision.
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QHE without net magnetic flux

3 Another unusual setting for IQHE with zero net magnetic flux:
proposal by Haldane in 1988 (Nobel prize 2016). Main ingredients:

dipolar magnetic field ⇒ n-n-n hopping t2 acquires complex phase

staggered potential on the sites of the two sub-lattices

−3
√
3t2

0

3
√
3t2

−π −π/2 0 π/2 π

ν = −1
(TI)

ν = +1
(TI)

ν = 0
(NI)

ν = 0
(NI)

W

φ

Phase diagram (predicted...) (... and measured, Esslinger et al. ’14)
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Theoretical understanding

These properties are well understood for non-interacting fermions. E.g.,

QHE: let Pµ = χ(H ≤ µ) = Fermi proj. If E|Pµ(x; y)| ≤ Ce−c|x−y|,
i.e., µ ∈ spectral gap, or µ ∈ mobility gap:

σ12 =
ie2

~
TrPµ[[X1, Pµ], [X2, Pµ]]∈ e

2

h
· Z

(Thouless-Kohmoto-Nightingale-Den Nijs ’82, Avron-Seiler-Simon ’83, ’94,

Bellissard-van Elst-Schulz Baldes ’94, Aizenman-Graf ’98...)

Minimal conductivity: gapless, semi-metallic, ground state.
Exact computation in a model of free Dirac fermions
(Ludwig-Fisher-Shankar-Grinstein ’94),
or in tight binding model (Stauber-Peres-Geim ’08).
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Effects of interactions?

What are the effects of electron-electron interactions? In graphene,
interaction strength is intermediate/large:

α =
e2

~v
∼ 2.2

and has visible effects on, e.g., the Fermi velocity.

But: no effects on conductivities! Why?

QHE. Folklore: interactions do not affect σ12 because it is
‘topologically protected’. But: geometrical interpretation of
interacting Hall conductivity is unclear.

Minimal longitudinal conductivity: no geometrical interpretation.
Cancellations due to Ward Identities? Big debate in the graphene
community, still ongoing (Mishchenko, Herbut-Juričić-Vafek, Sheehy-

-Schmalian, Katsnelson et al., Rosenstein-Lewkowicz-Maniv ...)
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Rigorous results, I

In 2009, we started developing a rigorous Renormalization Group
construction of the ground state of tight-binding interacting
graphene models.

1 Short-range interactions: analyticity of the ground state
correlations Giuliani-Mastropietro ’09, ’10

2 Coulomb interactions: proposal of a lattice gauge theory model,
construction of the g.s. at all orders, gap generation by
Peierls’-Kekulé instability Giuliani-Mastropietro-Porta ’10, ’12

3 Longitudinal conductivity w. short-range int.: universality of the
minimal conductivity Giuliani-Mastropietro-Porta ’11, ’12

4 Transverse conductivity w. short-range int.: universality of the
Hall conductivity, with U � gap Giuliani-Mastropietro-Porta ’15

Today: Universality of σ12 (up to the critical line) and of σ11 (on the
critical line) in the weakly interacting Haldane-Hubbard model.
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Rigorous results, II

Previous results on quantization of Hall cond. in interacting systems:

Consider clean systems, and assume that ∃ gap above the interacting
ground state (unproven in most physically relevant cases).

Fröhlich et al. ’91,... Effective field theory approach: gauge theory
of phases of matter. Quantization of the Hall conductivity as a
consequence of the chiral anomaly.

Thm: Hastings-Michalakis ’14. Gapped interacting fermions on a 2D
lattice, geometrical formula for σ12 in terms of N -body projector.

σ12 =
e2

h
· n+ (exp. small in the size of the system)

No constructive way of computing n. E.g., the result does not
exclude n ≡ n(size).

Note: our method: no topology/geometry, no assumption on gap:
decay of interacting correlations + cancellations from WI and SD.
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The lattice and the Hamiltonian

BA

`2

`1
x

Figure: Dimer  (a±x,σ, b
±
x,σ).

Hamiltonian: H = H0 + UV, where

H0 = n.n.+ complex n.n.n. hopping + staggered potential− µN

V =
∑
x

(nAx,↑n
A
x,↓ + nBx,↑n

B
x,↓)
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Conductivity

Finite temperature, finite volume Gibbs state (eventually, β, L→∞):

〈·〉β,L =
Tr · e−βH

Zβ,L
.

Conductivity defined via Kubo formula (e2 = ~ = 1):

σij := lim
η→0+

i

η

(∫ 0

−∞
dt eηt 〈〈

[
eiHtJie−iHt,Jj

]
〉〉∞ − 〈〈

[
Ji,Xj

]
〉〉∞
)

where: X =
∑
x,σ(xnAx,σ + (x+ δ1)nBx,σ) = position operator and

J := i
[
H, X

]
= current operator , 〈〈·〉〉∞ = lim

β,L→∞
L−2〈·〉β,L.

Kubo formula: linear response at t = 0, after having switched on
adiabatically a weak external field eηtE at t = −∞
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Conductivity

Finite temperature, finite volume Gibbs state (eventually, β, L→∞):

〈·〉β,L =
Tr · e−βH

Zβ,L
.

Conductivity defined via Kubo formula (e2 = ~ = 1):

σij := lim
η→0+

i

η

(∫ 0

−∞
dt eηt 〈〈
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〉〉∞ − 〈〈

[
Ji,Xj

]
〉〉∞
)
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The non-interacting Hamiltonian (Haldane model)

Haldane ’88. N.n. + complex n.n.n. hopping + staggered potential −µN

H0 = t1
∑
x,σ

[
a+x,σb

−
x,σ + a+x,σb

−
x−`1,σ + a+x,σb

−
x−`2,σ + h.c.

]
+t2

∑
x,σ

∑
α=±
j=1,2,3

[
eiαφa+x,σa

−
x+αγj ,σ + e−iαφb+x,σb

−
x+αγj ,σ

]
+W

∑
x,σ

[
a+x,σa

−
x,σ − b+x,σb−x,σ

]
− µ

∑
x,σ

[
a+x,σa

−
x,σ + b+x,σb

−
x,σ

]

N.n. hopping: t1

N.n.n. hopping:
t2e

iφ (black), t2e
−iφ (red).

γ1

W −W

γ3

γ2

δ1

δ2

δ3
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The non-interacting Hamiltonian (Haldane model)

Haldane ’88. N.n. + complex n.n.n. hopping + staggered potential −µN

H0 = t1
∑
x,σ

[
a+x,σb

−
x,σ + a+x,σb

−
x−`1,σ + a+x,σb

−
x−`2,σ + h.c.

]
+t2

∑
x,σ

∑
α=±
j=1,2,3

[
eiαφa+x,σa

−
x+αγj ,σ + e−iαφb+x,σb

−
x+αγj ,σ

]
+W

∑
x,σ

[
a+x,σa

−
x,σ − b+x,σb−x,σ

]
− µ

∑
x,σ

[
a+x,σa

−
x,σ + b+x,σb

−
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Gapped system. Gaps:

∆± = |m±| , m± = W±3
√

3t2 sinφ.

= “mass” of Dirac fermions.
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Non-interacting phase diagram

If U = 0, µ is kept in between the two bands, and m± 6= 0:

σ12 =
2e2

h
ν , ν =

1

2
[sgn(m−)− sgn(m+)]

−3
√
3t2

0

3
√
3t2

−π −π/2 0 π/2 π

ν = −1
(TI)

ν = +1
(TI)

ν = 0
(NI)

ν = 0
(NI)

W

φ

Simplest model of topological insulator.

Building brick for more complex systems (e.g. Kane-Mele model).
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Phase transitions in the Haldane-Hubbard model

Theorem (Giuliani, Jauslin, Mastropietro, Porta 2016)

There exists U0 > 0 and a function (“renormalized mass”)

mR,ω = mω + Fω(m±;U) where Fω = O(U), ω = ±

such that, for U ∈ (−U0, U0), choosing µ = µ(m±;U):

σ12 =
e2

h
[sgn(mR,−)− sgn(mR,+)], if mR,± 6= 0,

σcrii := σii
∣∣
mR,ω=0

=
e2

h

π

4
, if mR,−ω 6= 0 .

Remarks:

mR,± = 0 : renormalized critical lines.

If mR,+ = mR,− = 0 ⇒ σcr
ii = (e2/h)(π/2). Same as interacting graphene:

Giuliani, Mastropietro, Porta ’11, ’12.

For each ω = ±, unique solution to mR,ω = 0 (no bifurcation).
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Renormalized transition curves

−3
√
3t2

0

3
√
3t2

−π −π/2 0 π/2 π

ν = −1
(TI)

ν = +1
(TI)

ν = 0
(NI)

ν = 0
(NI)

W

φ

U = 0

U = 0.5

Away from the blue curve the correlations decay exponentially fast.

On the blue curve the decay is algebraic ⇒ chiral semi-metal.

Repulsive interactions enhance the topological insulator phase

We rigorously exclude the appearance of novel phases in the vicinity of
the unperturbed critical lines.
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Main strategy, I

Step 1: We employ constructive field theory methods (fermionic
Renormalization Group: determinant expansion, Gram-Hadamard
bounds, ...) to prove that:

the Euclidean correlation functions are analytic in U ,
uniformly in the renormalized mass, and decay at least
like |x|−2 at large space-(imaginary)time separations.

The result builds upon the theory developed by Gawedski-Kupiainen,

Battle-Brydges-Federbush, Lesniewski, Benfatto-Gallavotti, Benfatto-Mastropietro,

Feldman-Magnen-Rivasseau-Trubowitz, ..., in the last 30 years or so.
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Main strategy, I

Key aspects of the construction:

the critical theory is super-renormalizable, with
scaling dimension 3− nψ (as in standard graphene)

lattice symmetries constraint the number and structure of the
relevant and marginal couplings.

Renormalized propagator: if ~pωF = (2π
3 , ω

2π
3
√

3
), with ω = ±,

Ŝ2(k0, ~p
ω
F + ~k′) =

= −
(
ik0Z1,R,ω −mR,ω vR,ω(−ik′1 + ωk′2)
vR,ω(ik′1 + ωk′2) ik0Z2,R,ω +mR,ω

)−1(
1 +R(k0,~k

′)
)

where:

R(k0,~k
′): subleading (‘irrelevant’) error term

the effective parameters are given by convergent expansions

Z1,R,ω 6= Z2,R,ω
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Main strategy, II

Step 2: Combining the existence of the g.s. euclidean correlations with
a priori bounds on the correlation decay at complex times t ∈ C+,
we infer the analyticity of correlations for t ∈ C+ (via Vitali’s theorem)

Next, using the (Re t)−2 decay in complex time, we perform a
Wick rotation in the time integral entering the definition of σij(U):
the integral along the imaginary time axis is the same as the one
along the real line or, better, as the limit of the integral along a path
shadowing from above the real line. Existence and exchangeability of
the limit follows from Lieb-Robinson bounds.
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Main strategy, III

Step 3: The universality of the Euclidean Kubo conductivity is studied
by using lattice Ward Identities in the (convergent, renormalized)
perturbation theory for σij(U), and by combining them with:

a priori bounds on the correlations decay;

the Schwinger-Dyson equation;

the symmetry under time reversal of the different elements of σij .

The general strategy is analogous to [Coleman-Hill ’85]: “no corrections beyond

1-loop to the topological mass in QED2+1.”
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Conclusions and outlook

We discussed the transport properties of interacting fermionic systems on
the hexagonal lattice. In particular: Haldane-Hubbard model.

We presented results about:

construction of the ground state phase diagram and correlations at
weak coupling, in cases where U � gap,
quantization of the transverse and longitudinal conductivities up to,
and on, the renormalized critical line.

Tools: rigorous fermionic RG (determinant expansion, Gram-Hadamard bounds),
lattice symmetries, Ward identities, Schwinger-Dyson equation,
Lieb-Robinson bounds.

Open questions:

Spin transport in time-reversal invariant 2d insulators
(e.g., interacting Kane-Mele model)?

Interacting bulk-edge correspondence?

Effect of long-range interactions (e.g., static Coulomb)?
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Thank you!
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