AIP
 Journal of Mathematical Physics

Quantum Approximate Markov Chains and the Locality of Entanglement Spectrum

Fernando G.S.L. Brandão Caltech

based on joint work with
Kohtaro Kato
University of Tokyo

QMath 2016

Entanglement in Many-Body Quantum States

Entanglement in Many-Body Quantum States

$|\psi\rangle_{A A^{c}}$

Entanglement Entropy: $S(A)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$

Entanglement in Many-Body Quantum States

$|\psi\rangle_{A A^{c}}$

Entanglement Entropy: $S(A)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
For generic quantum states: $S(X) \approx \operatorname{vol}(X)$ (Page ‘93)

Entanglement in Many-Body Quantum States

$|\psi\rangle_{A A^{c}}$

Entanglement Entropy: $S(A)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
For generic quantum states: $S(X) \approx \operatorname{vol}(X)$ (Page ‘93) What's the behavior of EE for interesting states of matter?

Area Law

$|\psi\rangle_{A A^{c}}$

Entanglement is "localized", concentrated around the boundary

For every region $X: S(X)=\alpha|\partial X|-\gamma+\ldots$
e.g. gapped models, $2+1$ CFT (from RT formula)

Area Law

$|\psi\rangle_{A A^{c}}$

For every region $x: S(X)=\alpha|\partial X|-\gamma+\ldots$
y: Topological EE
(signature topological order)
$\gamma=\log \mathcal{D}, \quad \mathcal{D}=\sqrt{\sum_{a} d_{a}^{2}} \quad D:$ Quantum dimension

Area Law

$|\psi\rangle_{A A^{c}}$

Entanglement is "localized", concentrated around the boundary

For every region $X: S(X)=\alpha|\partial X|-\gamma+\ldots$

- Topological EE quantifies "non-local entanglement"
(Kitaev '12) $\gamma=0$: state is adiabatically connected to trivial phase (Kim '13) $\log (\mathrm{N}) \leq 2 \gamma \quad \mathrm{~N}:=$ number topologically protected states

Area Law

$|\psi\rangle_{A A^{c}}$

> Entanglement is "localized", concentrated around the boundary

For every region $x: S(X)=\alpha|\partial X|-\gamma+\ldots$

- Topological EE quantifies "non-local entanglement"
(Kitaev '12) $\gamma=0$: state is adiabatically connected to trivial phase (Kim '13) $\log (\mathrm{N}) \leq 2 \gamma \quad \mathrm{~N}:=$ number topologically protected states
- Bulk-boundary correspondence: topological order in the bulk has an effect on the boundary

Area Law

$|\psi\rangle_{A A^{c}}$

What are the consequences of an area law?
What's the influence of TEE on the boundary?

Area Law

$|\psi\rangle_{A A^{c}}$

Entanglement is "localized", concentrated around the boundary

What are the consequences of an area law?
What's the influence of TEE on the boundary? This talk:

TEE determines locality of
i) Boundary State
ii) Entanglement Spectrum
by strong subaddivitity and stronger subaddivitity

Quantum Information 1.01: Fidelity

... it's a measure of distinguishability between two quantum states.

Given two quantum states their fidelity is given by

$$
F(\rho, \sigma):=\operatorname{tr}\left(\left(\rho^{1 / 2} \sigma \rho^{1 / 2}\right)^{1 / 2}\right)
$$

It tells how distinguishable they are by any quantum Measurement

Ex 1: $F=1$: same state
Ex 2: $\mathrm{F}=0$: perfectly distinguishable states

Quantum Information 1.01: Relative Entropy

... it's another measure of distinguishability between two quantum states.

Def: $S(\rho \| \sigma):=\operatorname{tr}(\rho(\log (\rho)-\log (\sigma)))$
Gives optimal exponent for distinguishing the two states
Pinsker's inequality: $S(\rho \| \sigma) \geq-\frac{1}{2} \log F(\rho, \sigma)$

$$
S(\rho \| \sigma) \approx 0 \Longrightarrow \rho \approx \sigma
$$

Topological EE and Locality of Boundary States

ρ_{XYZ} : reduced state on XYZ
XYZ Boundary of A

Topological EE and Locality of Boundary States

ρ_{XYZ} : reduced state on XYZ
XYZ Boundary of A

Result 1. If $S(X)=\alpha|\partial X|-\gamma+\ldots$:
$\gamma \approx \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right)$

Topological EE and Locality of Boundary States

ρ_{xyZ} : reduced state on XYZ
XYZ Boundary of A

$$
e^{-|\partial X| / \xi}
$$

Result 1. If $S(X)=\alpha|\partial X|-\gamma+\ldots$:
$\gamma \approx \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right)$

$$
e^{-|\partial X| / \xi^{\prime}}
$$

Topological EE and Locality of Boundary States

ρ_{XYZ} : reduced state on XYZ
XYZ Boundary of A

Result 1. If $S(X)=\alpha|\partial X|-\gamma+\ldots$:

$$
\begin{aligned}
\gamma & \approx \quad \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right) \\
& \approx \quad \min _{H_{B_{1} B_{2}}, \ldots, H_{B_{2 k-1} B_{2 k}}} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \exp \left(H_{B_{1} B_{2}}+\ldots+H_{B_{2 k-1} B_{2 k}}\right) / \operatorname{tr}(\ldots)\right)
\end{aligned}
$$

Topological EE and Locality of Boundary States

ρ_{XYZ} : reduced state on XYZ
XYZ Boundary of A

$$
e^{-|\partial X| / \xi} \quad l=O(\log (|A|))
$$

Result 1. If $S(X)=\alpha|\partial X|-\gamma+\ldots$:
$\gamma \approx \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right)$
$\approx \quad \min _{H_{B_{1} B_{2}}, \ldots, H_{B_{2 k-1} B_{2 k}}} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \exp \left(H_{B_{1} B_{2}}+\ldots+H_{B_{2 k-1} B_{2 k}}\right) / \operatorname{tr}(\ldots)\right)$

$$
e^{-|\partial X| / \xi}
$$

Topological EE and Locality of Boundary States

ρ_{xyZ} : reduced state on XYZ
XYZ Boundary of A

Obs 1: $\gamma=0$
$\Longrightarrow \quad \rho_{B} \approx \exp \left(H_{B_{1} B_{2}}+\ldots H_{B_{2 k-1} B_{2 k}} / \operatorname{tr}(\ldots)\right)$

Obs 2: Thermal states has same on-site symmetries as original state Obs 3: Thermal state is max entropy state consistent with local constraints

TEE gives number of non-local bits

Interpretation relative entropy (Anshu et al '14)

TEE gives number of non-local bits

Interpretation relative entropy (Anshu et al '14)

TEE gives number of non-local bits

Interpretation relative entropy (Anshu et al '14)

TEE gives number of non-local bits

Interpretation relative entropy (Anshu et al '14)

What's the minimum classical comm. required for Bob to learn ρ ?
(i.e. to be able to prepare a copy of ρ)

TEE gives number of non-local bits

Interpretation relative entropy (Anshu et al '14)

$\approx S(\rho \| \sigma)$ necessary and sufficient for Bob to prepare a copy of ρ

TEE gives number of non-local bits

Interpretation relative entropy (Anshu et al '14)

$\approx S(\rho \| \sigma)$ necessary and sufficient for Bob to prepare a copy of ρ
$\gamma \approx \quad \min _{\sigma \in \text { Local Gibbs State }} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \sigma\right)$ gives number of non-local bits of ρ
obs: Consistent with $\gamma=\log (q u a n t u m$ dimension)

Entanglement Spectrum

$|\psi\rangle_{A A^{c}}$

$$
\begin{aligned}
\lambda\left(\rho_{A}\right): & \text { eigenvalues of } \rho_{\mathrm{A}} \\
& \text { Entanglement Spectrum }
\end{aligned}
$$

Area law statement about $-\sum_{i} \lambda_{i} \log \lambda_{i}$

What can we say about the whole spectrum?

Entanglement Spectrum

$|\psi\rangle_{A A^{c}}$

$$
\begin{aligned}
\lambda\left(\rho_{A}\right) & \text { : eigenvalues of } \rho_{\mathrm{A}} \\
& \text { Entanglement Spectrum }
\end{aligned}
$$

Area law statement about $-\sum_{i} \lambda_{i} \log \lambda_{i}$

What can we say about the whole spectrum?
(Haldane, Li '08, Cirac, Poiblanc, Schuch, Verstraete '11, ...)
$\gamma=0$: matches spectrum thermal state local model
$\gamma \neq 0$: matches spectrum thermal state local model after projecting into topological superselection sector

Entanglement Spectrum

We assume translation invariance s.t. $\rho_{\mathrm{x}}=\rho_{\mathrm{X}^{\prime}}$

Result 2: If $S(X)=\alpha|\partial X|-\gamma+\ldots$:

$$
\begin{aligned}
\gamma=0 & \Longrightarrow \lambda\left(\rho_{X}\right)^{\otimes 2} \approx \lambda\left(e^{\sum_{k} H_{B_{k}, B_{k+1}}}\right) \\
\gamma \neq 0 & \Longrightarrow \lambda\left(\rho_{X}\right)^{\otimes 2} \approx \lambda(\sigma)
\end{aligned}
$$

$$
\operatorname{tr}_{B_{1}}(\sigma)=e^{\sum_{k>1} H_{B_{k}, B_{k+1}}}
$$

Result 2 from 1

From area law assumption:
(more later)
$\rho_{X X^{\prime}} \approx \rho_{X} \otimes \rho_{X^{\prime}}$

Result 2 from 1

From area law assumption: (more later)

$$
\rho_{X X^{\prime}} \approx \rho_{X} \otimes \rho_{X^{\prime}}
$$

$$
\lambda\left(\rho_{X X^{\prime}}\right)=\lambda\left(\rho_{B}\right) \rightleftarrows \lambda\left(\rho_{X}\right) \otimes \lambda\left(\rho_{X^{\prime}}\right) \approx \lambda\left(\rho_{B}\right)
$$

Uhlmann's theorem There is an isometry $\mathrm{U}: \mathrm{B}->\mathrm{B}_{\mathrm{X}} \mathrm{B}_{\mathrm{X}^{\prime}}$ s.t.

$$
U|\psi\rangle_{X B X^{\prime}} \approx|\phi\rangle_{X B_{X}} \otimes\left|\phi^{\prime}\right\rangle_{X B_{X^{\prime}}} \quad \rho_{X}=\operatorname{tr}_{B_{X}}\left(|\phi\rangle\left\langle\left.\phi\right|_{X B_{X}}\right)\right.
$$

U maps degrees of freedom of X and X^{\prime} into B

Result 2 from 1

From area law assumption: (more later)

$$
\rho_{X X^{\prime}} \approx \rho_{X} \otimes \rho_{X^{\prime}}
$$

$$
\begin{aligned}
& \lambda\left(\rho_{X X^{\prime}}\right)=\lambda\left(\rho_{B}\right) \Longrightarrow \lambda\left(\rho_{X}\right) \otimes \lambda\left(\rho_{X^{\prime}}\right) \approx \lambda\left(\rho_{B}\right) \\
& \text { If } \gamma=0, \rho_{B} \approx e^{\sum_{k} H_{B_{k}, B_{k+1}} / Z}
\end{aligned}
$$

$$
\begin{aligned}
\gamma & \approx \quad \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right) \\
& \approx \quad \min _{H_{B_{1} B_{2}}, \ldots, H_{B_{2 k-1} B_{2 k}}} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \exp \left(H_{B_{1} B_{2}}+\ldots+H_{B_{2 k-1} B_{2 k}}\right) / \operatorname{tr}(\ldots)\right)
\end{aligned}
$$

Why does it hold?

We want to show:

$$
\begin{aligned}
\gamma & \approx \quad \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right) \\
& \approx \quad \min _{H_{B_{1} B_{2}}, \ldots, H_{B_{2 k-1} B_{2 k}}} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \exp \left(H_{B_{1} B_{2}}+\ldots+H_{B_{2 k-1} B_{2 k}}\right) / \operatorname{tr}(\ldots)\right)
\end{aligned}
$$

Y = 0 : follow from strong subadditivity (SSA) (Lieb, Ruskai '73)
$S(A B)+S(B C) \geq S(A B C)+S(B)$
X $\neq \mathrm{O}$: follows from a strengthening of SSA (Fawzi and Renner '14)

Applications of SSA

Used to prove optimal rates for nearly every quantum information protocol.

- Channel capacities (classical, quantum, private)
- Distillable Entanglement
-

(Casini, Huerta, Myers ...) SSA + Lorentz Invariance:
- Entropic proof of the c-theorem (irreversibility of renormalization flow)
- Proof of Bekenstein's and Bousso's bound
(Ryu-Takayanagi, Headrick, ...) Test for holographic proposals of entropy

Many others...

Conditional Mutual Information

Given $\rho_{A B C}$,

$$
\begin{aligned}
I(A: C \mid B) & :=S(A B)+S(B C)-S(A B C)-S(B) \\
& =S\left(\rho_{A B C} \| \exp \left(\log \left(\rho_{A B}\right)+\log \left(\rho_{B C}\right)-\log \left(\rho_{B}\right)\right)\right)
\end{aligned}
$$

Strong subadditivity: $I(A: C \mid B) \geq 0$

Conditional Mutual Information

Given $\rho_{A B C}$,

$$
\begin{aligned}
I(A: C \mid B) & :=S(A B)+S(B C)-S(A B C)-S(B) \\
& =S\left(\rho_{A B C} \| \exp \left(\log \left(\rho_{A B}\right)+\log \left(\rho_{B C}\right)-\log \left(\rho_{B}\right)\right)\right)
\end{aligned}
$$

Strong subadditivity: $I(A: C \mid B) \geq 0$
Stronger subadditivity (Fawzi-Renner '14):
$I(A: C \mid B) \geq \frac{1}{2} \min _{\Lambda: B \rightarrow B C}-\log \left(F\left(\rho_{A B C}, \Lambda\left(\rho_{A B}\right)\right)\right)$

Conditional Mutual Information

Given $\rho_{A B C}$,

$$
\begin{aligned}
I(A: C \mid B) & :=S(A B)+S(B C)-S(A B C)-S(B) \\
& =S\left(\rho_{A B C} \| \exp \left(\log \left(\rho_{A B}\right)+\log \left(\rho_{B C}\right)-\log \left(\rho_{B}\right)\right)\right)
\end{aligned}
$$

Strong subadditivity: $I(A: C \mid B) \geq 0$
Stronger subadditivity (Fawzi-Renner '14):

$$
\begin{aligned}
& I(A: C \mid B) \geq \frac{1}{2} \min _{\Lambda: B \rightarrow B C}-\log \left(F\left(\rho_{A B C}, \Lambda\left(\rho_{A B}\right)\right)\right) \\
& I(A: C \mid B) \approx 0 \Longrightarrow I_{A} \otimes \Lambda^{B \rightarrow B C}\left(\rho_{B C}\right) \approx \rho_{A B C}
\end{aligned}
$$

Conditional Mutual Information

Given $\rho_{A B C}$,

$$
\begin{aligned}
I(A: C \mid B) & :=S(A B)+S(B C)-S(A B C)-S(B) \\
& =S\left(\rho_{A B C} \| \exp \left(\log \left(\rho_{A B}\right)+\log \left(\rho_{B C}\right)-\log \left(\rho_{B}\right)\right)\right)
\end{aligned}
$$

Strong subadditivity: $I(A: C \mid B) \geq 0$
Stronger subadditivity (Fawzi-Renner '14):

$$
I(A: C \mid B) \geq \frac{1}{2} \min _{\Lambda: B \rightarrow B C}-\log \left(F\left(\rho_{A B C}, \Lambda\left(\rho_{A B}\right)\right)\right)
$$

Can reconstruct the state $A B C$ from reduction on $A B$ by acting on B only

Consequence of Area Law: State Reconstruction

For every $A B C$ with trivial topology:

$$
I(A: C \mid B) \approx 0
$$

$$
\begin{aligned}
& I(A: C \mid B) \\
= & S(A B)+S(B C)-S(A B C)-S(B) \\
= & \alpha(|\partial(A B)|+|\partial(B C)||\partial(A B C)|-|\partial(B)|)+\ldots \\
= & \alpha(6 l+6 l-8 l-4 l)+\ldots
\end{aligned}
$$

TEE as Conditional Mutual Info

(Kitaev, Preskill ‘05, Levin, Wen ‘05)

$$
\gamma=I(A: C \mid B)+\ldots
$$

$$
\begin{aligned}
& I(A: C \mid B) \\
= & S(A B)+S(B C)-S(A B C)-S(B) \\
= & \alpha(\partial(A B)+|\partial(B C)|-|\partial(A B C)|-|\partial(B)|)-\gamma-\gamma+\gamma+2 \gamma+\ldots \\
= & \gamma+\ldots
\end{aligned}
$$

Non zero TEE gives an obstruction to reconstruct $\rho_{A B C}$ from $\rho_{A B}$ by acting on B

Why does it work?

We want to show:

$$
\begin{aligned}
\gamma & \approx \quad \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right) \\
& \approx \quad \min _{H_{B_{1} B_{2}}, \ldots, H_{B_{2 k-1} B_{2 k}}} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \exp \left(H_{B_{1} B_{2}}+\ldots+H_{B_{2 k-1} B_{2 k}}\right) / \operatorname{tr}(\ldots)\right)
\end{aligned}
$$

Why does it work?

We want to show:

$$
\begin{aligned}
\gamma & \approx \quad \min _{H_{X Y}, H_{Y Z}} S\left(\rho_{X Y Z} \| \exp \left(H_{X Y}+H_{Y Z}\right) / \operatorname{tr}(\ldots)\right) \\
& \approx \quad \min _{H_{B_{1} B_{2}}, \ldots, H_{B_{2 k-1} B_{2 k}}} S\left(\rho_{B_{1} \ldots B_{2 k}} \| \exp \left(H_{B_{1} B_{2}}+\ldots+H_{B_{2 k-1} B_{2 k}}\right) / \operatorname{tr}(\ldots)\right)
\end{aligned}
$$

Let's start with the case $\gamma=0$.

Need to show $\rho_{B_{1} \ldots B_{2 k}}$ is close to thermal assuming all
 conditional mutual information are small, i.e. approximately independence

$$
I\left(B_{1} \ldots B_{j-1}: B_{j+1} \ldots B_{2 k-1} \mid B_{j} B_{2 k}\right) \approx 0
$$

Markov Chain

X, Y, Z with distribution $p(x, y, z)$
i) $X-Y$ - Z Markov if X and Z are independent conditioned on Y
ii) $\quad X-Y$ - Z Markov if there is a channel $\wedge: Y->Y Z$ s.t. $\Lambda\left(p_{X Y}\right)=p_{X Y Z}$

iii) $I(X: Y \mid Z)_{p}=\mathbb{E}_{z \sim p(z)} I(X: Y)_{p\left(x, y \mid z=z^{\prime}\right)}$

Markov Networks

We say X_{1}, \ldots, X_{n} on a graph G form a Markov Network if X_{i} is indendent of all other X^{\prime} 's conditioned on its neighbors

Ex: Markov chains

Hammersley-Clifford Theorem

Markov networks Hamiltonian

Gibbs state local classical
(on cliques of the graph)

Going Back

Need to show $\rho_{B_{1} \ldots B_{2 k}}$ is close to thermal assuming all conditional mutual information are small (approximately independence)

$I\left(B_{1} \ldots B_{j-1}: B_{j+1} \ldots B_{2 k-1} \mid B_{j} B_{2 k}\right) \approx 0$
We want a quantum and approximate version of Hammersley-Clifford, but only for 1D chains

Quantum Markov Chain

Classical: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ with distribution $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
i) $X-Y-Z$ Markov if X and Z are independent conditioned on Y
ii) $X-Y-Z$ Markov if there is a channel $\wedge: Y->Y Z$ s.t. $\Lambda\left(p_{X Y}\right)=p_{X Y Z}$

Quantum:
(Hayden, Jozsa, Petz, Winter '03)
i) $\quad \rho_{A B C}$ Markov quantum state if A and C are "independent conditioned" on B

Quantum Markov Chain

Classical: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ with distribution $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
i) $X-Y-Z$ Markov if X and Z are independent conditioned on Y
ii) $X-Y-Z$ Markov if there is a channel $\Lambda: Y->Y Z$ s.t. $\Lambda\left(p_{X Y}\right)=p_{X Y Z}$

Quantum:
(Hayden, Jozsa, Petz, Winter '03)
i) $\rho_{A B C}$ Markov quantum state if A and C are "independent conditioned" on B, i.e. $H_{B} \simeq \bigoplus_{k} H_{B_{L, k}} \otimes H_{B_{R, k}}$ and

$$
\rho_{A B C}=\bigoplus_{k} p_{k} \rho_{A B_{L, k}} \otimes \rho_{B_{R, k} C}
$$

Quantum Markov Chain

Classical: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ with distribution $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
i) $X-Y-Z$ Markov if X and Z are independent conditioned on Y
ii) $X-Y-Z$ Markov if there is a channel $\Lambda: Y->Y Z$ s.t. $\Lambda\left(p_{X Y}\right)=p_{X Y Z}$

Quantum:
(Hayden, Jozsa, Petz, Winter '03)
i) $\rho_{A B C}$ Markov quantum state if A and C are "independent conditioned" on B, i.e. $H_{B} \simeq \bigoplus_{k} H_{B_{L, k}} \otimes H_{B_{R, k}}$ and

$$
\rho_{A B C}=\bigoplus_{k} p_{k} \rho_{A B_{L, k}} \otimes \rho_{B_{R, k} C}
$$

ii) $\rho_{A B C}$ Markov if there is channel \wedge : $\mathrm{B}-\mathrm{BC}$ s.t. $\wedge\left(\rho_{A B}\right)=\rho_{A B C}$

Quantum Markov Chain

Quantum: (Hayden, Jozsa, Petz, Winter '03)
i) $\rho_{A B C}$ Markov quantum state if A and C are "independent conditioned" on B, i.e. $H_{B} \simeq \bigoplus_{k} H_{B_{L, k}} \otimes H_{B_{R, k}} \quad$ and

$$
\rho_{A B C}=\bigoplus_{k} p_{k} \rho_{A B_{L, k}} \otimes \rho_{B_{R, k} C}
$$

ii) $\rho_{A B C}$ Markov if there is channel $\Lambda: B->B C$ s.t. $\wedge\left(\rho_{A B}\right)=\rho_{A B C}$
iii) $\rho_{A B C}$ Markov if $\rho_{A B C}=e^{H_{A B}+H_{B C}},\left[H_{A B}, H_{B C}\right]=0$

Quantum Hammersley-Clifford Theorem

(Leifer, Poulin ‘08, Brown, Poulin '12) Analogous result holds replacing classical Hamiltonians by commuting quantum Hamiltonians (obs: quantum version more fragile; only works for graphs with no 3cliques)

Only Gibbs states of commuting Hamiltonians appear. Is there a fully quantum formulation?

Q. Approximate Markov States ρ

ρ quantum approximate Markov if for every A, B, C $I(A: C \mid B) \rightarrow 0$ when $\operatorname{dist}(A, C) \rightarrow \infty$

Conjecture

Quantum Approximate Markov
Gibbs state local Hamiltonian

$$
\rho=e^{\sum_{k} H_{k}}
$$

Strengthening of Area Law ρ

Conjecture
Quantum Approximate Markov
Gibbs state local Hamiltonian
(Wolf, Verstraete, Hastings, Cirac ‘07) $I(A: B C)_{\rho_{T}} \leq \frac{c}{T}|\partial A|$
Gibbs state @ temperature $T: \quad \rho_{T}:=e^{-H / T} / Z$

$$
H=\sum_{k} H_{k}, \quad\left\|H_{k}\right\| \leq 1
$$

Strengthening of Area Law

Conjecture
Quantum Approximate Markov
Gibbs state local Hamiltonian

From conjecture:
$I(A: B C)=I(A: B)+I(A: C \mid B) \approx I(A: B)$
Gives rate of saturation of area law

Approximate Quantum Markov Chains are Thermal

A
thm

1. Let H be a local Hamiltonian on n qubits. Then

$$
I(A: C \mid B)_{\rho_{T}} \leq e^{-c^{\prime} \sqrt{|B|}+e^{c / T}}
$$

Approximate Quantum Markov Chains are Thermal

A
thm

1. Let H be a local Hamiltonian on n qubits. Then

$$
I(A: C \mid B)_{\rho_{T}} \leq e^{-c^{\prime} \sqrt{|B|}+e^{c / T}}
$$

2. Let $\rho_{1 \ldots n}$ be a state on n qubits s.t. for every split ABC with $|\mathrm{B}| I(A: C \mid B) \leq \varepsilon \quad$. Then

$$
\begin{gathered}
\min _{H \in \mathcal{H}_{2 m}} S\left(\rho \| e^{H}\right) \leq \varepsilon \frac{n}{m} \\
\mathcal{H}_{2 m}:=\left\{H: H=\sum_{k} H_{k, k+1}, \forall k \operatorname{supp}\left(H_{k, k+1}\right) \leq 2 m\right\}
\end{gathered}
$$

Proof Part 2

Let $\sigma_{X_{1} \ldots X^{n}}$ be the maximum entropy state s.t.

$$
\sigma_{X_{i}, X_{i+1}}=\rho_{X_{i}, X_{i+1}} \quad \forall i \in[n / m]
$$

Proof Part 2

Let $\sigma_{X_{1} \ldots X_{\frac{n}{m}}}$ be the maximum entropy state s.t.
$\sigma_{X_{i}, X_{i+1}}=\rho_{X_{i}, X_{i+1}} \quad \forall i \in[n / m]$
Fact 1 (Jaynes '57): $\sigma=e^{\sum_{k} H_{X_{k}, X_{k+1}}}$
"maximum entropy state given linear constraints is thermal"

$$
\operatorname{argmax}\left(S(\sigma) \text { s.t. } \operatorname{tr}\left(\sigma M_{i}\right)=c_{i}\right)=\exp \left(\sum_{i} \lambda_{i} M_{i}\right)
$$

Proof Part 2

Let $\sigma_{X_{1} \ldots X_{\frac{n}{m}}}$ be the maximum entropy state s.t.
$\sigma_{X_{i}, X_{i+1}}=\rho_{X_{i}, X_{i+1}} \quad \forall i \in[n / m]$
Fact 1 (Jaynes '57): $\sigma=e^{\sum_{k} H_{X_{k}, X_{k+1}}}$
Fact $2 \min _{H \in \mathcal{H}_{2 m}} S\left(\rho \| e^{H} / Z\right) \leq-S(\rho)-\operatorname{tr}(\rho \log \sigma)$

$$
=S(\sigma)-S(\rho)
$$

Let's show it's small

Proof Part 2

$$
\begin{aligned}
& \quad \underbrace{\mathbf{x}_{1}}_{\mathbf{m}}{ }^{\mathbf{x}_{\mathbf{2}}}{ }^{\mathbf{x}_{\mathbf{3}}}\left(X_{1} \ldots X_{n / m}\right)_{\sigma} \\
& \leq S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} \ldots X_{n / m}\right)_{\sigma} \\
& { }_{\text {SSA }}
\end{aligned}
$$

Proof Part 2

$$
\begin{aligned}
& \underbrace{\mathbf{x}_{1}}_{\mathbf{m}} \\
& S\left(X_{1} \ldots X_{n / m}\right)_{\sigma} \\
\leq & S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} \ldots X_{n / m}\right)_{\sigma} \\
\leq & S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} X_{3}\right)_{\sigma}-S\left(X_{3}\right)_{\sigma}+S\left(X_{3} \ldots X_{n / m}\right)_{\sigma}
\end{aligned}
$$

Proof Part 2

$$
\begin{aligned}
& \underbrace{\mathbf{x}_{\mathbf{1}}}_{\mathbf{m}} \\
& S\left(X_{1} \ldots X_{n / m}\right)_{\sigma} \\
\leq & S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} \ldots X_{n / m}\right)_{\sigma} \\
\leq & S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} X_{3}\right)_{\sigma}-S\left(X_{3}\right)_{\sigma}+S\left(X_{3} \ldots X_{n / m}\right)_{\sigma} \\
\leq & \sum_{i} S\left(X_{i} X_{i+1}\right)_{\sigma}-S\left(X_{i+1}\right)_{\sigma}
\end{aligned}
$$

Proof Part 2

$$
\begin{aligned}
& \underbrace{\mathbf{x}_{\mathbf{1}}}_{\mathbf{m}} \mathbf{x}_{\mathbf{2}} \\
& S\left(X_{1} \ldots X_{n / m}\right)_{\sigma} \\
& \leq S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} \ldots X_{n / m}\right)_{\sigma} \\
& \leq S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} X_{3}\right)_{\sigma}-S\left(X_{3}\right)_{\sigma}+S\left(X_{3} \ldots X_{n / m}\right)_{\sigma} \\
& \leq \sum_{i} S\left(X_{i} X_{i+1}\right)_{\sigma}-S\left(X_{i+1}\right)_{\sigma} \\
&= \sum_{i} S\left(X_{i} X_{i+1}\right)_{\rho}-S\left(X_{i+1}\right)_{\rho} \\
& \\
& \text { Since } \sigma_{X_{i}, X_{i+1}}=\rho_{X_{i}, X_{i+1}} \quad \forall i \in[n / m]
\end{aligned}
$$

Proof Part 2

$$
\begin{aligned}
& \underbrace{\mathbf{x}_{1}}_{\mathbf{m}} \\
& S\left(X_{1} \ldots X_{n / m}\right)_{\sigma} \\
\leq & S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} \ldots X_{n / m}\right)_{\sigma} \\
\leq & S\left(X_{1} X_{2}\right)_{\sigma}-S\left(X_{2}\right)_{\sigma}+S\left(X_{2} X_{3}\right)_{\sigma}-S\left(X_{3}\right)_{\sigma}+S\left(X_{3} \ldots X_{n / m}\right)_{\sigma} \\
\leq & \sum_{i} S\left(X_{i} X_{i+1}\right)_{\sigma}-S\left(X_{i+1}\right)_{\sigma} \\
= & \sum_{i} S\left(X_{i} X_{i+1}\right)_{\rho}-S\left(X_{i+1}\right)_{\rho} \\
\leq & S\left(X_{1} \ldots X_{n / m}\right)_{\rho}+\varepsilon \frac{n}{m}
\end{aligned}
$$

Since $I\left(X_{i}: X_{i+2} \ldots X_{n / m} \mid X_{i+1}\right) \leq \varepsilon \forall i$

Proof Part 1

Recap: Let H be a local Hamiltonian on n qubits. Then

$$
I(A: C \mid B)_{\rho_{T}} \leq e^{-c^{\prime} \sqrt{|B|}+e^{c / T}}
$$

We show there is a recovery channel from B to $B C$ reconstructing the state on $A B C$ from its reduction on $A B$.

More technical. Uses Quantum Belief Propagation equations of Hastings.

Summary

- Locality of EE (area law) implies locality of boundary states and entanglement spectrum
- Quantum Approximate Markov Chains are Thermal

Summary

- Locality of EE (area law) implies locality of boundary states and entanglement spectrum
- Quantum Approximate Markov Chains are Thermal

Open Questions:

- Applications to high energy/holography?
- Are two copies of entanglement spectrum needed?
- Is the conjecture about approximate Markov chains true?
- Thermal state has same symmetries as original state. Mapping from 2D (zero temperature) to 1D (thermal). Is it useful for classification of (symmetry-protected) phases?

Structure of Recovery Map

There exists an operator $X \downarrow B$ such that

Structure of Recovery Map

There exists an operator $X \downarrow B$ such that

Repeat-until-success Method

We normalize $\kappa \downarrow B \rightarrow B C$ and define a CPTD-map $\Lambda \downarrow B \rightarrow B C$.
\rightarrow Succeed to recover with a constant probability p.

\square Choose $N \sim l(|B|=\mathcal{O}(l \uparrow 2))$.
\rightarrow Total error=Fail probability $(1-p) \uparrow l+$ approx. $\operatorname{error} \mathcal{O}(e \uparrow-\mathcal{O}(l))=\mathcal{O}(e \uparrow-\mathcal{O}(l))$.

Locality of Perturbations

The key point in the proof:
For a short-ranged Hamiltonian H, the local perturbation to H only perturb the Gibbs state locally.

$$
\begin{aligned}
& \text { A useful lemma by Araki (Araki, '69) } \\
& \text { For 1D Hamiltonian with short-range interaction } H \text {, } \\
& \|e \uparrow H+V e \uparrow-H-e \uparrow H \downarrow+V e \uparrow-H \downarrow /\| \leq \mathcal{O}(e \uparrow-\mathcal{O}(l))
\end{aligned}
$$

$$
\begin{aligned}
& e \uparrow-\beta H \rightarrow e \uparrow-\beta(H+V) \approx X \downarrow I e \uparrow-\beta H X \downarrow I \uparrow \dagger \\
& X \downarrow I=e \uparrow-\beta / 2(H \downarrow I+V) e \uparrow \beta / 2 H \downarrow I \\
& \qquad \text { Local }
\end{aligned}
$$

Proof for $\gamma \neq 0$

thm 1 Suppose $|\psi\rangle$ satisfies the area law assumption. Then

$$
\begin{aligned}
2 \gamma & \approx I(A: C \mid B) \\
& \approx \min _{H_{A B}, H_{B C}} S\left(\rho_{A B C} \| \exp \left(H_{A B}+H_{B C}\right) / Z\right)
\end{aligned}
$$

Proof for $\mathbf{\gamma} \neq 0$

We follow the strategy of (Kano et al '15) for the zero-correlation length case

Area Law implies

$$
\begin{aligned}
& I\left(A: B_{2} \mid B_{1}\right) \approx 0 \\
& I\left(C: B_{1} \mid B_{2}\right) \approx 0
\end{aligned}
$$

By Fawzi-Renner Bound, there are channels

$$
\Lambda: B_{1} \rightarrow B_{1} A
$$

$$
\Delta: B_{2} \rightarrow B_{2} C
$$

st.
$\Lambda\left(\rho_{B_{1} B_{2}}\right) \approx \rho_{A B_{1} B_{2}}, \quad \Delta\left(\rho_{B_{1} B_{2}}\right) \approx \rho_{B_{1} B_{2} C}$

Proof for $\gamma \neq 0$

Define: $\sigma_{A B_{1} B_{2} C}:=\Lambda^{B_{1} \rightarrow B_{1} A} \otimes \Delta^{B_{2} \rightarrow B_{2} C}\left(\rho_{B_{1} B_{2}}\right)$
We have $\rho_{A B} \approx \sigma_{A B}, \rho_{B C} \approx \sigma_{B C}$
It follows that C can be reconstructed from B. Therefore

$$
I(A: C \mid B)_{\sigma} \approx 0
$$

Proof for $\gamma \neq 0$

Define: $\sigma_{A B_{1} B_{2} C}:=\Lambda^{B_{1} \rightarrow B_{1} A} \otimes \Delta^{B_{2} \rightarrow B_{2} C}\left(\rho_{B_{1} B_{2}}\right)$
We have $\rho_{A B} \approx \sigma_{A B}, \rho_{B C} \approx \sigma_{B C}$
It follows that C can be reconstructed from B. Therefore

$$
I(A: C \mid B)_{\sigma} \approx 0
$$

Since
$\left.\left.I(A: C \mid B)_{\sigma}=S\left(\sigma_{A B C} \| \exp \left(\log \left(\sigma_{A B}\right)\right)+\log \left(\sigma_{B C}\right)\right)-\log \left(\sigma_{B}\right)\right)\right)$
$\pi \approx \sigma$ with
$\pi:=\exp \left(\log \left(\sigma_{A B}\right)+\log \left(\sigma_{B C}\right)-\log \left(\sigma_{B}\right)\right) / \operatorname{tr}(\ldots)$
So $I(A: C \mid B)_{\pi} \approx 0$

Proof for $\gamma \neq 0$

Since $I(A: C \mid B)_{\pi} \approx 0$
$S(A B C)_{\pi} \approx S(A B)_{\pi}+S(B C)_{\pi}-S(B)_{\pi}$

$$
\begin{aligned}
& \approx S(A B)_{\rho}+S(B C)_{\rho}-S(B)_{\rho} \\
& =S(A B C)_{\rho}+I(A: C \mid B)_{\rho}
\end{aligned}
$$

Let R_{2} be the set of Gibbs states of Hamiltonians $H=H_{A B}+H_{B C}$. Then

$$
\begin{aligned}
\min _{\nu \in R_{2}} S(\rho \| \nu) & =\min _{\nu \in R_{2}}-S(\rho)-\operatorname{tr}(\rho \log \nu) \\
& \approx I(A: C \mid B)_{\rho}+\min _{\nu \in R_{2}}-S(\pi)-\operatorname{tr}(\rho \log \nu) \\
& \approx I(A: C \mid B)_{\rho}+\min _{\nu \in R_{2}}-S(\pi)-\operatorname{tr}(\pi \log \nu) \\
& =I(A: C \mid B)_{\rho}
\end{aligned}
$$

Summary

- Locality of EE (area law) implies locality of boundary states and entanglement spectrum
- Quantum Approximate Markov Chains are Thermal

Open Questions:

- Applications to high energy/holography?
- Are two copies of entanglement spectrum needed?
- Is the conjecture about approximate Markov chains true?
- Thermal state has same symmetries as original state. Mapping from 2D (zero temperature) to 1D (thermal). Useful for classification of (symmetry-protected) phases?

