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What’s	the	behavior	of	EE	for	interesUng	states	of	maVer?	
	
	



Area	Law	

For	every	region	X:	
	
	

Entanglement	is	“localized”,	
concentrated	around	the	boundary		

e.g.	gapped	models,	2+1	CFT	(from	RT	formula)		



Area	Law	

For	every	region	X:	
	
ɣ:	Topological	EE				
(signature	topological	order)	
	
																																																					D:	Quantum	dimension	
	

Entanglement	is	“localized”,	
concentrated	around	the	boundary		



Area	Law	

For	every	region	X:	
	
•  Topological	EE	quanUfies	“non-local	entanglement”		
	

(Kitaev	‘12)	ɣ	=	0	:	state	is	adiabaUcally	connected	to	trivial	phase	
(Kim	‘13)	log(N)	≤	2ɣ				N	:=	number	topologically	protected	states		
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For	every	region	X:	
	
•  Topological	EE	quanUfies	“non-local	entanglement”		
	

(Kitaev	‘12)	ɣ	=	0	:	state	is	adiabaUcally	connected	to	trivial	phase	
(Kim	‘13)	log(N)	≤	2ɣ				N	:=	number	topologically	protected	states		
	
•  Bulk-boundary	correspondence:	topological	order	in	the	

bulk	has	an	effect	on	the	boundary			

Entanglement	is	“localized”,	
concentrated	around	the	boundary		



Area	Law	

What	are	the	consequences	of	an	area	law?		
What’s	the	influence	of	TEE	on	the	boundary?				
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concentrated	around	the	boundary		



Area	Law	

What	are	the	consequences	of	an	area	law?		
What’s	the	influence	of	TEE	on	the	boundary?		This	talk:		
	
	

Entanglement	is	“localized”,	
concentrated	around	the	boundary		

Area	Law	
TEE	determines	locality	of	

i)	Boundary	State		
ii)	Entanglement	Spectrum	

	
by	strong	subaddiviUty	and		

stronger	subaddiviUty		



Quantum	Informa<on	1.01:	
Fidelity	

Given	two	quantum	states	their	fidelity	is	given	by	
	
	
	
	
It	tells	how	disUnguishable	they	are	by	any	quantum	
Measurement	
	

Ex	1:	F=1:	same	state	
	

Ex	2:	F=0	:	perfectly	disUnguishable	states		

…	it’s	a	measure	of	dis<nguishability	between	two	
quantum	states.		



Quantum	Informa<on	1.01:	
Rela<ve	Entropy	

…	it’s	another	measure	of	dis<nguishability	
between	two	quantum	states.		

Def:	
	
Gives	opUmal	exponent	for	disUnguishing	the	two	states	
	
	
Pinsker’s	inequality:		
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Topological	EE	and	Locality		
of	Boundary	States	

⍴XYZ:	reduced	state	on	XYZ	
	
XYZ	Boundary	of	A			B1	

B2	 B3	 Bk-1	

Bk	
Bk+1	B2k	

Bk-2	…	

Bk+2	…	
A	

Obs	1:	

Obs	2:	Thermal	states	has	same	on-site	symmetries	as	original	state	
	

Obs	3:	Thermal	state	is	max	entropy	state	consistent	with	local	constraints	



TEE	gives	number	of	non-local	bits		
InterpretaUon	relaUve	entropy	(Anshu	et	al	‘14)	

Alice	 Bob	

knows	⍴	 knows	σ	
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InterpretaUon	relaUve	entropy	(Anshu	et	al	‘14)	

Alice	 Bob	

knows	⍴	 knows	σ	

EPR	pairs	

Classical	Comm.	

What’s	the	minimum	classical	comm.	required	for	Bob	to	learn	⍴?	
(i.e.	to	be	able	to	prepare	a	copy	of	⍴)		



TEE	gives	number	of	non-local	bits		
InterpretaUon	relaUve	entropy	(Anshu	et	al	‘14)	
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							necessary	and	sufficient	for	Bob	to	prepare	a	copy	of	⍴	



TEE	gives	number	of	non-local	bits		
InterpretaUon	relaUve	entropy	(Anshu	et	al	‘14)	

Alice	 Bob	

knows	⍴	 knows	σ	

EPR	pairs	

Classical	Comm.	

							necessary	and	sufficient	for	Bob	to	prepare	a	copy	of	⍴	

gives	number	of	non-local	bits	of	⍴	

obs:		Consistent	with	ɣ	=	log(quantum	dimension)																																																				



Entanglement	Spectrum	

:	eigenvalues	of	⍴A	
		Entanglement	Spectrum		

Area	law	statement	about	
	
	
What	can	we	say	about	the	whole	spectrum?		
	
	

		



Entanglement	Spectrum	

:	eigenvalues	of	⍴A	
		Entanglement	Spectrum		

Area	law	statement	about	
	
	
What	can	we	say	about	the	whole	spectrum?		
	
	

ɣ=0:	matches	spectrum	thermal	state	local	model	
	

ɣ≠0:	matches	spectrum	thermal	state	local	model		
aser	projecUng	into	topological	superselecUon	sector	
		
		

(Haldane,	Li	’08,	Cirac,	Poiblanc,	Schuch,	Verstraete	’11,	…)	



Entanglement	Spectrum	

Result	2:	If																																														:		

X	 X’	

B1	
B2	
B3	

…
	

Bl-1	
Bl	

We	assume	translaUon	invariance	
s.t.	⍴X	=	⍴X’	
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Bl-1	
Bl	

From	area	law	assumpUon:		
(more	later)	

Uhlmann’s	theorem	There	is	an	isometry	U	:	B	->	BXBX’	s.t.		
		

U	maps	degrees	of	freedom	of	X	and	X’	into	B	



If										,		

Result	2	from	1	

X	 X’	
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Bl-1	
Bl	

From	area	law	assumpUon:		
(more	later)	



Why	does	it	hold?	
We	want	to	show:	
	
	
	
	
	
	
Ɣ	=	O	:	follow	from	strong	subaddi1vity	(SSA)	(Lieb,	Ruskai	‘73)		
	
	
	
	
Ɣ	≠	O	:	follows	from	a	strengthening	of	SSA	(Fawzi	and	Renner	‘14)		
	
	
	
	
	
	
	
	
	



Applica<ons	of	SSA	
Used	to	prove	opUmal	rates	for	nearly	every	quantum		
informaUon	protocol.	
	
				-	Channel	capaciUes	(classical,	quantum,	private)	
				-	DisUllable	Entanglement		
				-	….			
	
(Casini,	Huerta,	Myers	…)		SSA	+	Lorentz	Invariance:	
			-	Entropic	proof	of	the	c-theorem		
					(irreversibility	of	renormalizaUon	flow)		
	

			-	Proof	of	Bekenstein’s	and	Bousso’s	bound	
	
(Ryu-Takayanagi,	Headrick,	…)	Test	for	holographic		
proposals	of	entropy	
	

Many	others…	
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Stronger	subaddi<vity	(Fawzi-Renner	’14):		



Condi<onal	Mutual	Informa<on	

Strong	subaddi<vity:					

Given																,	

Stronger	subaddi<vity	(Fawzi-Renner	’14):		

quantum	channel	



Condi<onal	Mutual	Informa<on	

Strong	subaddi<vity:					

Given																,	

Stronger	subaddi<vity	(Fawzi-Renner	’14):		

Can	reconstruct	the	state	ABC	from	reducUon	on	AB	by	acUng	on	B	only	

A	 B	 C	A	 B	



Consequence	of	Area	Law:		
State	Reconstruc<on	

A	 B	 C	

A	 B	 C	

For	every	ABC	with	trivial	topology:	

l	
l	



TEE	as	Condi<onal	Mutual	Info	

B	 B	

A	

C	

(Kitaev,	Preskill	‘05,	Levin,	Wen	‘05)	
	

Non	zero	TEE	gives	an	obstrucUon	to	reconstruct	⍴ABC	from	⍴AB	
by	acUng	on	B		



Why	does	it	work?	
We	want	to	show:	
	
	
	
	
	
	
					
	
	
	
	
	
	
	
	



Why	does	it	work?	
We	want	to	show:	
	
	
	
	
	
	
Let’s	start	with	the	case	ɣ=0.	
	
	

Need	to	show	
is	close	to	thermal	assuming	all	
condiUonal	mutual	informaUon		
are	small,	i.e.	approximately	independence	
					
	
	
	
	
	
	
	
	

B1	

B2	 B3	 Bk-1	

Bk	
Bk+1	B2k	

Bk-2	…	

Bk+2	…	



Markov	Chain	

X,	Y,	Z	with	distribuUon	p(x,	y,	z)	
i)  X-Y-Z	Markov	if	X	and	Z	are	independent	condiUoned	on	Y	
ii)				X-Y-Z	Markov	if	there	is	a	channel	Λ	:	Y	->	YZ	s.t.	Λ(pXY)	=	pXYZ		
	
Quantum:	
i)  	ρCRB	Markov	quantum	state	iff	C	and	R	are	independent	

condiUoned	on	B,	i.e.																																											and		

ii)  ρCRB	Markov	iff	there	is	channel	Λ	:	B	->	RB	s.t.		Λ(ρCB)	=	ρCRB				

	
	
	

HB '
M

k

HBL,k ⌦HBR,k

⇢CRB =
M

k

pk⇢CBL,k ⌦ ⇢BR,kR

(Hayden,	Jozsa,	Petz,	Winter	’03)		I(C:R|B)=0	iff	ρCRB	is	quantum	Markov		

X	
Y	

Λ	

X	
Y	 Z	

iii)	



Markov	Networks	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x9	

x10	

We	say	X1,	…,	Xn	on	a	graph	G	form	a	Markov	Network	if	
Xi	is	indendent	of	all	other	X’s	condiUoned	on	its	neighbors	
	
	
			Ex:	Markov	chains		 x1	 x2	 x3	 x4	 x5	 x6	 x7	 x8	 x9	



Hammersley-Clifford	Theorem	

x1	

x2	

x3	

x4	

x5	

x7	

x8	

x9	

x10	

Markov	networks																														Gibbs	state	local	classical	
Hamiltonian	
																																																														(on	cliques	of	the	graph)	



Going	Back	
	
Need	to	show	
is	close	to	thermal	assuming	all	
condiUonal	mutual	informaUon		
are	small	(approximately	independence)	
	
	
	
	
We	want	a	quantum	and	approximate	version	of	Hammersley-Clifford,	
but	only	for	1D	chains	
					
	
	
	
	
	
	
	
	

B1	

B2	 B3	 Bk-1	

Bk	
Bk+1	B2k	

Bk-2	…	

Bk+2	…	



Quantum	Markov	Chain	

Classical:			X,	Y,	Z	with	distribuUon	p(x,	y,	z)	
i)  X-Y-Z	Markov	if	X	and	Z	are	independent	condiUoned	on	Y	
ii)				X-Y-Z	Markov	if	there	is	a	channel	Λ	:	Y	->	YZ	s.t.	Λ(pXY)	=	pXYZ		
	
Quantum:	
i)  	ρABC	Markov	quantum	state	if	A	and	C	are	”independent	

condiUoned”	on	B		

ii)  ρABC	Markov	iff	there	is	channel	Λ	:	B	->	BC	s.t.		Λ(ρAB)	=	ρABC				

	
	
	

(Hayden,	Jozsa,	Petz,	Winter	’03)	
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Quantum	Markov	Chain	

Quantum:	
i)  	ρABC	Markov	quantum	state	if	A	and	C	are	”independent	

condiUoned”	on	B,	i.e.																																											and		

ii)  ρABC	Markov	if	there	is	channel	Λ	:	B	->	BC	s.t.		Λ(ρAB)	=	ρABC				

iii)  ρABC	Markov	if			

	
	
	

(Hayden,	Jozsa,	Petz,	Winter	’03)	



Quantum	Hammersley-Clifford	
Theorem	

q1	

q2	

q3	

q4	

q5	

q6	

q7	

q8	

q9	

q10	

(Leifer,	Poulin	‘08,	Brown,	Poulin	‘12)	Analogous	result	holds	replacing	
classical	Hamiltonians	by	commu1ng	quantum	Hamiltonians		
	

(obs:	quantum	version	more	fragile;	only	works	for	graphs	with	no	3-
cliques)		

Only	Gibbs	states	of	commuUng	Hamiltonians	appear.	Is	there	a	fully	
quantum	formulaUon?	



Q.	Approximate	Markov	States	

A	
B	

C	

quantum	approximate	Markov	if	for	every	A,	B,	C		
	

																																								when		
	

Conjecture		
Quantum	Approximate	Markov												Gibbs	state	local	Hamiltonian													



Strengthening	of	Area	Law	

A	
B	

C	

Conjecture		
Quantum	Approximate	Markov												Gibbs	state	local	Hamiltonian													

(Wolf,	Verstraete,	HasUngs,	Cirac	‘07)		

Gibbs	state	@	temperature	T:	
	
	



Strengthening	of	Area	Law	

A	
B	

C	

Conjecture		
Quantum	Approximate	Markov												Gibbs	state	local	Hamiltonian													

From	conjecture:	
	
	
Gives	rate	of	saturaUon	of	area	law	
	
	
		



Approximate	Quantum	Markov	
Chains	are	Thermal	

thm		
	

1.  Let	H	be	a	local	Hamiltonian	on	n	qubits.	Then	

	
	
	
	
	

A	 B	 C	



thm		
	

1.  Let	H	be	a	local	Hamiltonian	on	n	qubits.	Then	

2.  Let														be	a	state	on	n	qubits	s.t.	for	every	
split	ABC	with	|B|	>	m,																													.	Then															

	
	
	
	
	

A	 B	 C	

Approximate	Quantum	Markov	
Chains	are	Thermal	



Proof	Part	2	
X1	 X2	 X3	

m	

Let																								be	the	maximum	entropy	state	s.t.		
		



Proof	Part	2	
X1	 X2	 X3	

m	

Let																								be	the	maximum	entropy	state	s.t.		
		

Fact	1	(Jaynes	‘57):	
	

		
	“maximum	entropy	state	given	linear	constraints	is	thermal”	



Proof	Part	2	
X1	 X2	 X3	

m	

Let																								be	the	maximum	entropy	state	s.t.		
		

Fact	1	(Jaynes	‘57):	
	

Fact	2		
	

Let’s	show	it’s	small	



Proof	Part	2	
X1	 X2	 X3	

m	

SSA	



Proof	Part	2	
X1	 X2	 X3	

m	
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m	

Since		



Proof	Part	2	
X1	 X2	 X3	

m	

Since		



Proof	Part	1	
Recap:	Let	H	be	a	local	Hamiltonian	on	n	qubits.	Then	

We	show	there	is	a	recovery	channel	from	B	to	BC	
reconstrucUng	the	state	on	ABC	from	its	reducUon	on	AB.	
	
More	technical.	Uses	Quantum	Belief	Propaga<on	
equaUons	of	HasUngs.					



Summary	

•  	Locality	of	EE	(area	law)	implies	locality	of	boundary	states	
and	entanglement	spectrum		

•  	Quantum	Approximate	Markov	Chains	are	Thermal	



Summary	

•  	Locality	of	EE	(area	law)	implies	locality	of	boundary	states	
and	entanglement	spectrum		

•  	Quantum	Approximate	Markov	Chains	are	Thermal	

•  	ApplicaUons	to	high	energy/holography?		
•  	Are	two	copies	of	entanglement	spectrum	needed?		

•  	Is	the	conjecture	about	approximate	Markov	chains	true?		

•  	Thermal	state	has	same	symmetries	as	original	state.	Mapping		
from	2D	(zero	temperature)	to	1D	(thermal).	Is	it	useful	for	
classificaUon	of	(symmetry-protected)	phases?		

Open	Ques<ons:	



Structure	of	Recovery	Map	

There	exists	an	operator	​𝑋↓𝐵 	such	that 


​𝜌↑​𝐻↓𝐴𝐵𝐶  ≈​id↓𝐴 ⊗ ​𝜅↓𝐵→BC (​𝜌↓𝐴𝐵↑​𝐻↓𝐴𝐵𝐶  )= ​𝑋↓𝐵 (​tr↓​

𝐵↑𝑅  [​𝑋↓𝐵↑−1 ​𝜌↓𝐴𝐵↑​𝐻↓𝐴𝐵𝐶  ​(​𝑋↓𝐵↑−1 )↑†  ]⊗ ​𝜌↑​𝐻↓​𝐵↑𝑅 

𝐶  )​𝑋↓𝐵↑† 
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Structure	of	Recovery	Map	

There	exists	an	operator	​𝑋↓𝐵 	such	that 


​𝜌↑​𝐻↓𝐴𝐵𝐶  ≈​id↓𝐴 ⊗ ​𝜅↓𝐵→BC (​𝜌↓𝐴𝐵↑​𝐻↓𝐴𝐵𝐶  )= ​𝑋↓𝐵 (​tr↓​

𝐵↑𝑅  [​𝑋↓𝐵↑−1 ​𝜌↓𝐴𝐵↑​𝐻↓𝐴𝐵𝐶  ​(​𝑋↓𝐵↑−1 )↑†  ]⊗ ​𝜌↑​𝐻↓​𝐵↑𝑅 

𝐶  )​𝑋↓𝐵↑† 

	




	
	

𝐴	 ​𝐵↑𝐿 	 ​𝐵↑𝑅 	

𝐴	 ​𝐵↑𝐿 	 ​𝐵↑𝑅 	

𝐴	 ​𝐵↑𝐿 	 ​𝐵↑𝑅 	 𝐶	

𝐴	 ​𝐵↑𝐿 	 ​𝐵↑𝑅 	 𝐶	

Difficulty:		​𝜅↓𝐵→𝐵𝐶 	is	a	trace-increasing	map		



Repeat-un<l-success	Method	

𝐴	 𝐶	​𝐵↓𝑁 	​​𝐵 ↓𝑁−1 	​𝐵↓𝑁−1 	 ​​𝐵 ↓2 	 ​𝐵↓2 	 ​​𝐵 ↓1 	 ​𝐵↓1 	

2𝑙	𝑙	

q Choose	𝑁∼𝑙 (|𝐵|=𝒪(​𝑙↑2 )).	

→Total	error=Fail	probability	 ​(1−𝑝)↑𝑙 	+	approx.	error	𝒪(​𝑒↑−𝒪(𝑙) )=𝒪(​𝑒↑−𝒪(𝑙) ) .		

Apply	​​Λ ↓​𝐵↓1 
→​𝐵↓1 𝐶 		

Success	

Obtain	a	state	≈​𝜌↑​𝐻↓𝐴𝐵𝐶  	

Fail	 Trace	out	​​​𝐵 ↓1 
𝐵↓1 𝐶	&	apply	 ​​Λ 
↓​𝐵↓2 →​​𝐵↓2 ​​𝐵 

↓1 𝐵↓1 𝐶 		Success	

Fail	 Trace	out	 ​​𝐵 ↓𝑁
−1 ..𝐶	&	apply	 ​​Λ 
↓​𝐵↓𝑁 →​𝐵↓𝑁 

…𝐶 		Success	

⋯	
Fail	 Fail	

⋯	

We	normalize	 ​𝜅↓𝐵→𝐵𝐶 	and	define	a	CPTD-map	​​Λ ↓𝐵→𝐵𝐶 .		
→	Succeed	to	recover	with	a	constant	probability	𝑝.	



Locality	of	Perturba<ons	
The	key	point	in	the	proof:	

For	a	short-ranged	Hamiltonian	𝐻,	the	local	perturbaUon	to	𝐻	only	,	the	local	perturbaUon	to	𝐻	only		only	
perturb	the	Gibbs	state	locally.	

A	useful	lemma	by	Araki	(Araki,	‘69)	
For	1D	Hamiltonian	with	short-range	interacUon	𝐻,		

‖​𝑒↑𝐻+𝑉 ​𝑒↑−𝐻 − ​𝑒↑​𝐻↓𝐼 +𝑉 ​𝑒↑− ​𝐻↓𝐼  ‖≤𝒪(​𝑒↑−𝒪(𝑙) )	

𝐼	 𝑉	
𝑙	

​𝑒↑−𝛽𝐻 →​𝑒↑−𝛽(𝐻+𝑉) ≈​𝑋↓𝐼 ​𝑒↑−𝛽𝐻 ​𝑋↓𝐼↑† 	
​𝑋↓𝐼 = ​𝑒↑− ​𝛽/2 ( ​𝐻↓𝐼 +𝑉) ​𝑒↑​𝛽/2 ​𝐻↓𝐼  	

Local	



Proof	for	ɣ≠0	

thm	1	Suppose										saUsfies	the	area	law	assumpUon.	Then	
	
	
	
	
																															

B	 B	

A	

C	



B1	 B1	
A	

C	

B2	 B2	

We	follow	the	strategy	of	(Kato	et	al	‘15)	for	the	zero-correlaUon	length	case	

Area	Law	implies		

By	Fawzi-Renner	Bound,	there	are	channels																																									s.t.	

Proof	for	ɣ≠0	



Define:	
	

We	have	
	

It	follows	that	C	can	be	reconstructed	from	B.	Therefore	
	
	

Proof	for	ɣ≠0	



Define:	
	

We	have	
	

It	follows	that	C	can	be	reconstructed	from	B.	Therefore	
	
	
Since		
	
	
																	with		
	
	
	

So		

Proof	for	ɣ≠0	



Since	

Let	R2	be	the	set	of	Gibbs	states	of	Hamiltonians	H	=	HAB	+	HBC.	Then	

Proof	for	ɣ≠0	



Summary	

•  	Locality	of	EE	(area	law)	implies	locality	of	boundary	states	
and	entanglement	spectrum		

•  	Quantum	Approximate	Markov	Chains	are	Thermal	

•  	ApplicaUons	to	high	energy/holography?		
•  	Are	two	copies	of	entanglement	spectrum	needed?		

•  	Is	the	conjecture	about	approximate	Markov	chains	true?		

•  	Thermal	state	has	same	symmetries	as	original	state.	Mapping		
from	2D	(zero	temperature)	to	1D	(thermal).	Useful	for	
classificaUon	of	(symmetry-protected)	phases?		

Open	Ques<ons:	


