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2 Extension to Coulomb interactions.

• Conclusions.
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Introduction

Fermionic mean field regime

• N interacting fermionic particles in R3, ψN ∈ L2
a(R3N ).

V (xi − xj) = pair interaction potential, Vext(xi) = confining potential.

System confined in Λ ⊂ R3, |Λ| = O(1). Density = O(N).

• Mean field regime. V varies on scale O(1), and V → N−1/3V . In fact:

Eint = 〈ψN ,
∑N
i<j V (xi − xj)ψN 〉 = O(N2)

Ekin = 〈ψN ,
∑N
i=1−∆xiψN 〉 & N5/3 (by Lieb-Thirring inequality)

• Mean field Hamiltonian:

Htrap
N :=

N∑
j=1

[
−∆j + Vext(xj)

]
+N−1/3

N∑
i<j

V (xi − xj)
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Introduction

Hartree-Fock theory

• Hartree-Fock ground state energy:

ENHF := infψSlater
〈ψSlater, H

trap
N ψSlater〉

ψSlater(x1, . . . , xN ) =
1√
N !

det fi(xj) , 〈fi, fj〉 = δij .

• Setting ωN := N tr2,...,N |ψSlater〉〈ψSlater| =
∑N
i=1 |fi〉〈fi|,

〈ψSlater, H
trap
N ψSlater〉 = tr(−∆ + Vext)ωN

+
1

2N1/3

∫
V (x− y)(ωN (x;x)ωN (y; y)− |ωN (x; y)|2)

One expects that, as N →∞:

ENGS := inf
ψ∈L2

a(R3N )

〈ψ,Htrap
N ψ〉

〈ψ,ψ〉
= ENHF + smaller order terms ,

Proven for large atoms: Bach ’92, Graf-Solovej ’94.

• Next: Thomas-Fermi theory (Lieb-Simon ’73, Fournais-Lewin-Solovej ’15).
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Introduction

Fermionic mean-field dynamics

• Suppose that Vext = 0 at t = 0. Dynamics:

i∂tψN,τ =
[ N∑
j=1

−∆xj +N−1/3
N∑
i<j

V (xi − xj)
]
ψN,τ

• Ekin ∼ N5/3 ⇒ velocity ∼ N1/3. Time scale: τ ∼ N−1/3.

• Introducing the rescaled time t = N1/3τ :

iN1/3∂tψN,t =
[ N∑
j=1

−∆j +N−1/3
N∑
i<j

V (xi − xj)
]
ψN,t

• Let ε = N−1/3. Multiplying LHS and RHS by ε2:

iε∂tψN,t =
[ N∑
j=1

−ε2∆j +N−1
N∑
i<j

V (xi − xj)
]
ψN,t

Mean-field limit coupled with a semiclassical scaling.
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Introduction

Hartree-Fock and Vlasov dynamics

• Let γ
(1)
N = N tr2,...,N |ψN 〉〈ψN | ' ωN , with ωN = ω2

N (Slater det.).

• Expect: for N � 1, γ
(1)
N,t ' ωN,t = solution of time dep. HF equation:

iε∂tωN,t = [−ε2∆ + V ∗ ρt −Xt, ωN,t]

where ρt(x) = N−1ωN,t(x;x) and Xt(x; y) = N−1V (x− y)ωN,t(x; y).

• Wigner transform of ωN,t:

WN,t(x, p) :=
ε3

(2π)3

∫
dy ωN,t

(
x+ ε

y

2
, x− εy

2

)
e−ip·y

As N →∞, Vlasov equation:

∂tW∞,t(x, p) + p · ∇xW∞,t(x, p) =
(
∇xV ∗ ρt

)
(x) · ∇pW∞,t(x, p)

• Narnhofer-Sewell ’81, Spohn ’81; Elgart-Erdős-Schlein-Yau ’04;

Bardos-Golse-Gottlieb-Mauser ’03, Fröhlich-Knowles ’11
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Bardos-Golse-Gottlieb-Mauser ’03, Fröhlich-Knowles ’11
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Pure states

Hartree-Fock dynamics of pure states

1 (interaction) V ∈ L1(R3), such that
∫
dp |V̂ (p)|(1 + |p|)2 <∞.

2 (initial data) ψN ∈ L2
a(R3N ) s.t. tr |γ(1)N − ωN | ≤ C, with ωN = ω2

N and

tr |[eiq·x, ωN ]| ≤ CNε (1 + |q|) , tr |[ε∇, ωN ]| ≤ CNε

Theorem (Benedikter-P-Schlein, Comm. Math. Phys. ’14)

Let γ
(1)
N,t be the reduced 1PDM of ψN,t = e−iHN t/εψN . Let ωN,t be the sol. of

iε∂tωN,t = [−ε2∆ + V ∗ ρt −Xt, ωN,t] , ωN,0 ≡ ωN

Then, for some constant c > 0 and for all t ∈ R:

‖γ(1)N,t − ωN,t‖HS ≤ exp(c exp(c|t|)) , tr |γ(1)N,t − ωN,t| ≤ N
1/2 exp(c exp(c|t|))
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Pure states

Remarks

1 Result still holds replacing Hartree-Fock with Hartree:

iε∂tω̃N,t = [−ε2∆ + V ∗ ρt, ω̃N,t]

2 Pseudorelativistic case [Benedikter-P-Schlein, J. Math. Phys. ’14]:

iε∂tψN,t =
( N∑
j=1

√
−ε2∆j +m2 +N−1

∑
i<j

V (xi − xj)
)
ψN,t

with m = O(1). Under similar assumptions, we proved the emergence of
the pseudorelativistic time-dependent HF equation:

iε∂tωN,t = [
√
−ε2∆ +m2 + V ∗ ρt −Xt, ωN,t] .

3 Commutator estimates ≡ semiclassical structure. Implied by

ωN (x; y) ' Nϕ
(x− y

ε

)
ξ
(x+ y

2

)
for suitable ϕ, ξ.

true for the semiclassical approximation of the HF ground state.

4 Similar result: Petrat-Pickl ’14.
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Mixed states

Hartree-Fock dynamics of mixed states

1 (interaction) V ∈ L1(R3),
∫
dp |V̂ (p)|(1 + |p|2) < +∞.

2 (initial data) Quasi-free mixed state with 1PDM ωN , s.t. 0 ≤ ωN ≤ 1 and

tr |[x,
√
ωN ]|2 ≤ CNε2 tr |[ε∇,

√
ωN ]|2 ≤ CNε2

tr |[x,
√

1− ωN ]|2 ≤ CNε2 tr |[ε∇,
√

1− ωN ]|2 ≤ CNε2

Theorem (Benedikter-Jaksic-P-Saffirio-Schlein, CPAM ’15)

Let γ
(1)
N,t be the 1PDM of the many-body evolution of the initial state. Let ωN,t

be the solution of

iε∂tωN,t = [−ε2∆ + V ∗ ρt −Xt, ωN,t] , ωN,0 ≡ ωN

Then, for some constant c > 0 and for all t ∈ R:

‖γ(1)N,t − ωN,t‖HS ≤ exp(c exp(c|t|)) , tr |γ(1)N,t − ωN,t| ≤ N
1/2 exp(c exp(c|t|))
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Sketch of the proof

HF dynamics of pure states - sketch of the proof

• Fock space representation:

F(L2(R3)) =
⊕
n≥0

L2
a(R3n) , F 3 ϕ = (ϕ(0), ϕ(1), . . . , ϕ(n), . . .)

{a(f), a∗(g)} = 〈f, g〉 , {a(f), a(g)} = {a∗(f), a∗(g)} = 0 .

• For simplicity: ψN = ψSlater. On F , ψSlater  Rω0
Ω,

with Rω0
= Bogoliubov transformation and Ω = (1, 0, . . . , 0, . . .).

[Mixed states can be represented via Bogoliubov transformations on
F(L2 ⊕ L2): Araki-Wyss representation.]

• We get:

‖γ(1)N,t − ωN,t‖HS ≤ C〈UN (t)Ω,NUN (t)Ω〉

with UN (t) = R∗ωt
e−iHN t/εRω0

and (Nϕ)(n) = nϕ(n).

• Goal: prove 〈UN (t)Ω,NUN (t)Ω〉 ≤ C(t), uniformly in N . Implied by:∣∣iε∂t〈UN (t)Ω,NUN (t)Ω〉
∣∣ ≤ Cε〈UN (t)Ω,NUN (t)Ω〉
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Sketch of the proof

HF dynamics of pure states - sketch of the proof

• We have:

iε∂t〈UN (t)Ω,NUN (t)Ω〉 = 〈UN (t)Ω, [N ,LN (t)]UN (t)Ω〉

with LN (t) the generator of UN (t). The largest contribution comes from:

1

2N

∫
dxdy V (x− y)a(ux)a(uy)a(v̄x)a(v̄y) + h.c.

with u = 1− ωN,t, v∗v = ωN,t and vu = 0.
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Marcello Porta Mean field evolution of fermions October 8, 2016 10 / 12



Sketch of the proof

HF dynamics of pure states - sketch of the proof

• We have:

iε∂t〈UN (t)Ω,NUN (t)Ω〉 = 〈UN (t)Ω, [N ,LN (t)]UN (t)Ω〉

with LN (t) the generator of UN (t). The largest contribution comes from:

1

2N

∫
dp V̂ (p)

∫
dr (v[eipx , ωN,t])(r1, r3)(v[e−ipx , ωN,t])(r2, r4)ar1ar2ar3ar4

with u = 1− ωN,t, v∗v = ωN,t and vu = 0. Expectation bounded by:

N−1 sup
p

tr |[ωN,t, eipx]|2

1 + |p|
〈UN (t)Ω,NUN (t)Ω〉 ≤ C(t)ε〈UN (t)Ω,NUN (t)Ω〉 ,

thanks to the propagation of the semiclassical structure:

tr |[ωN,t, eipx]| ≤ Cec|t|Nε(1 + |p|) , tr |[ωN,t, ε∇]| ≤ Cec|t|Nε .

Marcello Porta Mean field evolution of fermions October 8, 2016 9 / 12



Coulomb interactions

Coulomb interactions?

• For Coulomb interactions, V̂ (p) = p−2: slow decay in p.

• Instead of Fourier, use (smoothed) Fefferman-de la Llave representation:

1

|x− y|
=

4

π2

∫ ∞
0

dr
1

r5

∫
dz χ(|x− z|/r)χ(|y − z|/r), χ(ρ) = e−ρ

2

.

Here, one has to control commutators [χ(|x|/r), ωN,t]. Need to:

use the smallness of the support of χ(|x|/r) to control the r−5,

extract a factor ε from the commutator.

• ⇒ A more local notion of semiclassical structure is needed to control the
commutators.

• Results on short time scales, without semiclassical structure:

Bach-Breteaux-Petrat-Pickl-Tzaneteas ’14, Petrat ’16.
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1

|x− y|
=

4

π2

∫ ∞
0

dr
1

r5

∫
dz χ(|x− z|/r)χ(|y − z|/r), χ(ρ) = e−ρ

2

.
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Coulomb interactions

Hartree-Fock dynamics for Coulomb interactions

• Let ψN ∈ L2
a(R3N ) s.t. tr |γ(1)N − ωN | ≤ C, with ωN = ω2

N .

Let ρ|[ωN,t,x]|(x) := |[ωN,t, x]|(x;x). Suppose that ∃T > 0 s.t.:

sup
t∈[0,T ]

‖ρ|[ωN,t,x]|‖1 + ‖ρ|[ωN,t,x]|‖p ≤ CNε, for some p > 5 .

Theorem (P-Rademacher-Saffirio-Schlein, arXiv:1608.05268)

Let γ
(1)
N,t be the reduced 1PDM of ψN,t = e−iHN t/εψN . Let ωN,t be the sol. of

iε∂tωN,t = [−ε2∆ + V ∗ ρt −Xt, ωN,t] , ωN,0 ≡ ωN

with V (x− y) = |x− y|−1. Then, for every δ > 0 there exists C > 0 s.t.:

sup
t∈[0,T ]

‖γ(1)N,t − ωN,t‖HS ≤ CN
5/12+δ , sup

t∈[0,T ]

tr |γ(1)N,t − ωN,t| ≤ CN
11/12+δ
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Conclusions

Conclusions

• We proved the convergence of many-body dynamics to the Hartree-Fock
dynamics, for pure and mixed states, in the mean field scaling.

• A crucial role is played by the semiclassical structure of the initial data,
which can be propagated along the HF flow, for bounded potentials.

• Extension to Coulomb interactions, if the semiclassical structure holds at
positive times (trivially true for translation invariant systems).

• Other results. Derivation of the Vlasov equation, staring from the HF
equation, for pure and mixed states: Benedikter-P-Saffirio-Schlein, ARMA ’16

• Open problems.

Propagation of the semiclassical structure for Coulomb potentials?

Stability of BCS initial data?

Other scaling regimes (quantum Boltzmann)?
....

Marcello Porta Mean field evolution of fermions October 8, 2016 12 / 12



Conclusions

Thank you!
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Mixed states

Mixed states

• So far, we considered initial data close to ψSlater (pure quasi-free state).
OK for T = 0. What happens at T > 0?

• In general, a fermionic state corresponds to a density matrix
ρN : F → F ,

ρN =
∑
n≥0

λn|ψn〉〈ψn| , 0 ≤ λn ≤ 1 , ψn ∈ F ≡ F(L2(R3))

For T > 0, ρN is not a rank-1 projection on F .

• However, we can still represent it with a pure state as follows. Let

κN := ρ
1/2
N =

∑
n≥0

λ1/2n |ψn〉〈ψn| '
∑
n≥0

λ1/2n ψn ⊗ ψn ∈ F ⊗ F

The state of the system is represented by a vector in F ⊗ F :

〈O〉ρN = trF OρN = 〈κN , O ⊗ 1κN 〉
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Mixed states

Mixed states

• F(L2(R3))⊗F(L2(R3))
U' F(L2(R3)⊕ L2(R3)). The unitary U that

conjugates the two spaces is called exponential law.

• A mixed quasi-free state is represented by a vector R0ΩF(L2⊕L2), where
R0 implements a Bogoliubov transformation (≡ Araki-Wyss
representation)

• Dynamics generated by the Liouvillian LN := U(HN ⊗ 1− 1⊗HN )U∗

ϕN,t = e−iLN t/εR0ΩF(L2⊕L2)

• It follows that

‖γ(1)N,t − ωN,t‖HS ≤ C〈UN (t)Ω,N UN (t)Ω〉

with UN (t) := R∗t e
−iLN t/εR0.

• Grönwall-type estimate plus propagation of semiclassical structure
implies:

〈UN (t)Ω,N UN (t)Ω〉 ≤ C(t)
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