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Motivation

I Semiclassical Schrödinger equation

idtΨt = ((i∇+ At)
2 + Vt)Ψt

with classical A and V .

I Goal: Derive this equation from QED.

I Standard textbook argument: Heisenberg equations
Problem: Result on expectation values only,

to general.
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Skeleton of a proof

I Known fact: Photons in a coherent state interact with charges
classically.

I We want a system, where photons are created by the charges.

I Problem: prove classical behaviour of back-reaction on the charges.

I Main Idea: Special system of bosons in a condensate.
semiclassical equation via mean �eld limit.
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Mean �eld for the bosons: The Hartree equation

H =
N∑
j=1

−∆j +
N∑
j=1

At(xj) + N−1
∑
k<j

V (xj − xk)

Interaction �felt� by each particle of order one
Ψ0 =

∏N
j=1 φ0(xj) idtΨt = HtΨt

Interaction destroys product structure.
Question:

I In which regimes: Ψt ≈
∏N

j=1 φt(xj)

I What is φt?
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Mean �eld for �particle 1�

V

x1x x x x x x x x x x
23 45 67 89 1011

W (x1) = N−1
∑N

j=2 V (x1 − xj) for �xed, |φ0|2- distributed x2, . . . , xN .

Law of large numbers: |φ0|2 close to the empirical density ρ0.
W (x1) ≈ V ? |φ0|2(x1) (�Mean �eld�).

E�ective Dynamics: Hartree equation

idtφt =
(
−∆ + At + V ? |φt |2

)
φt .
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Grönwall argument

V

x1x x x x x x x x x x
23 45 67 89 1011 x12,13,14

Let αt be a measure for the dirt in the condensate:

dtαt ≤ C (αt + O(1))

Grönwall: αt stays small if α0 was small (αt ≤ eCtα0 + O(1))
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Some remarks

I Macroscopic equations make only sense for systems with many
bosons or heavy, well localized bosons:

I Microscopic system is linear, linearity is broken by the initial
condition (product state).

I Flux and density have to be empirical �ux and density.

I Good argument takes care of this, looking at Heisenberg-equations is
not enough.
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The microscopic system

i∂tΨN(t) = HN
mΨN(t), ΨN(0) = ΨN0,

Pauli-Fierz Hamiltonian

HN
m =

N∑
j=1

(
−i∇j −

Âκ(xj)√
N

)2

+
1

N

∑
1≤j<k≤N

v(xj − xk) + Hf

second quantized A-�eld

Âκ(x) =
∑
λ=1,2

∫
d3k κ̃(k)

1√
2|k |

ελ(k)
(
e ikxa(k , λ) + e−ikxa∗(k, λ)

)
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The macroscopic system

Hertree-Maxwells equation

i∂tϕt(x) =
(

(−i∇− (κ ? A)(x , t))2 + (v ? |ϕt |2)(x)
)
ϕt(x),

∇ · A(x , t) = 0,

∂tA(x , t) = −E (x , t),

∂tE (x , t) = (−∆A) (x , t)−
(
1−∇div∆−1

)
(κ ? j t) (x),

j t(x) = 2
(
=(ϕ∗t∇ϕt)(x)− |ϕt |2(x)(κ ? A)(x , t)

)
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Grönwall-type estimate

βa := 〈〈ΨNt , q1,ΨNt〉〉

βb :=
∑
λ=1,2

∫
d3k |k |〈〈ΨNt ,

(
a∗(k , λ)√

N
− α∗t (k , λ)

)(
a(k, λ)√

N
− αt(k, λ)

)
ΨNt〉〉

βc := 〈〈
(
HN

m

N
− EM [ϕt , αt ]

)
ΨNt ,

(
HN

m

N
− EM [ϕt , αt ]

)
ΨNt〉〉

|k |1/2αt(k , λ) :=
1√
2
ελ(k) · (|k |FT [A](k , t)− iFT [E ](k, t))

βa measure for the dirt in the condensate
βb measures the distance of the photon �eld from a coherent state.
βc measures the distance of the energies.

Grönwall: β̇t ≤ C (β + o(N)) and β0 small implies βt is small.
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Thank you!
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