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Outline
I Fermion lattice systems, interactions, dynamics

I Lieb-Robinson bounds, fermionic conditional expectation

I Gapped ground state phases

I The spectral flow a.k.a. quasi-adiabatic evolution

I Stability of the spectral gap

I Outlook
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Fermion Lattice Systems
Spinless fermions on a lattice Γ (a countable set with metric
d) are described by the CAR algebra AΓ = CAR(`2(Γ)),
generated by creation and annihilation operators a+

x , ax , x ∈ Γ,
which satisfy the Canonical Anticommutation Relations:

{ax , ay} = {a+
x , a

+
y} = 0, {a+

x , ay} = δx ,y1l, x , y ∈ Γ.

Spin and/or band indices can be included by extending Γ, e.g.,
by considering Γ̃ = Γ× {1, . . . , n}. Let P0(Γ) denote the
collection of finite subsets of Γ.
For X ⊂ Γ, AX = CAR(`2(X )) is naturally identified with the
subalgebra of AΓ generated the ax , a

+
x , with x ∈ X .
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Let A+
X and A−X denote the subspaces spanned by the even

and odd monomials in ax , a
+
x , x ∈ X . A+

Λ is a subalgebra of
AΛ, but A−Λ is not. Note that if X ∩ Y = ∅, we have

AB = BA, for all A ∈ A+
X ,B ∈ AY .

An interaction Φ for a fermion system on Γ is defined as a
map P0(Γ)→ A+

Γ such that Φ(X ) = Φ(X )∗ ∈ A+
X . For finite

Λ, we define the Hamiltonian

HΛ =
∑
X⊂Λ

Φ(X ).

Note that we only allow interactions terms that preserve the
fermion number parity.

For finite Λ ⊂ Γ, the Heisenberg dynamics is defined in the
usual way

τΛ
t (A) = e itHΛAe−itHΛ , A ∈ AΛ.
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If Φ is not too long-range, in the same way as for spin
systems, the thermodynamic limit

lim
Λ→Γ

τΛ
t (A) = τt(A), A ∈ Aloc

Γ =
⋃

Λ∈P0(Λ)

AΛ,

defines a strongly continuous one-parameter group of
automorphisms on AΓ = Aloc

Γ . A standard way to show this is
using Lieb-Robinson bounds for interactions with a finite
F -norm:

‖Φ‖F = sup
x ,y∈Γ

F (d(x , y))−1
∑

X∈P0(Γ)

x ,y∈X

‖Φ(X )‖,

for a decreasing positive function F ∈ L1(R+), such that∑
z∈Γ F (d(x , z))F (d(z , y)) ≤ F (d(x , y)), x , y ∈ Γ. We can

also include time-dependent interactions. For simplicity, we
assume that the time-dependence of all interactions is
continuous in the operator norm.
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In the time-dependent case, the role of v |t|, where v is the
Lieb-Robinson velocity, is played by the quantity

rs,t(Φ,F ) = 2

∫ max(s,t)

min(s,t)

‖Φ(·, r)‖F dr .

Theorem (Lieb-Robinson Bound for Fermions)
Let Φ be a time-dependent even interaction P0(Γ)→ Aloc

Γ .
Let X ,Y ∈ P0(Γ) with X ∩ Y = ∅. Then, for any Λ ∈ P0(Γ)
with X ∪ Y ⊂ Λ and any A ∈ A+

X and B ∈ AY , we have∥∥[τΛ
t,s(A),B

]∥∥ ≤ 2‖A‖‖B‖
(
ers,t(Φ,F ) − 1

)
D(X ,Y )

for all t, s ∈ R. Here the quantity D(X ,Y ) is given by

D(X ,Y ) = min

{∑
x∈X

∑
y∈∂ΦY

F (d(x , y)),
∑

x∈∂ΦX

∑
y∈Y

F (d(x , y))

}
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The Φ-boundary of X is defined by

∂Φ(X ) = {x ∈ X | exist Z ,Φ(Z ) 6= 0, x ∈ Z ,Z ∩ X c 6= ∅}

Remark: one can also estimate
∥∥{τΛ

t,s(A),B}
∥∥, for A ∈ A−X

and B ∈ A−Y .
Lieb-Robinson 1972, N-Sims 2006, Hastings-Koma 2006,
N-Sims-Ogata 2006, ... , Bru-Pedra 2016, N-Sims-Young in
prep.
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Conditional Expectation for Fermions
Lieb-Robinson Bounds express the approximate locality of the
dynamics: time-evolved local observables are approximately
local.
In order to express this quantitatively we need maps
EΛ

X : AΛ → AX , X ⊂ Λ ∈ P0(Γ), with the properties of a
conditional expectation.

For each x ∈ Γ, define

u(0)
x = 1l, u(1)

x = a+
x + ax , u

(2)
x = a+

x − ax , u
(3)
x = 1l− 2a+

x ax .

It follows from the CAR that these are unitaries. Clearly,
u

(0)
x , u

(3)
x ∈ A+

{x}, and u
(1)
x , u

(2)
x ∈ A−{x}. Therefore, u

(0)
x and

u
(3)
x commute with the elements of AΓ\{x}, and u

(1)
x and u

(2)
x

commute with A+
Γ\{x} and anticommute with A−Γ\{x}.
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Fix a finite Λ ⊂ Γ and X a proper subset of Λ. Fix an ordering
of the sites: Λ \ X = {x1, . . . , xk}. Then, for each
α1, . . . , αk ∈ {0, 1, 2, 3} define the unitary element u(α) ∈ AΛ

by
u(α) = u(α1)

x1
· · · u(αk )

xk
.

The following expression defines a unity-preserving completely
positive map AΛ → AΛ:

EΛ
X (A) =

1

4k

∑
α∈{0,1,2,3}k

u(α)∗Au(α), A ∈ AΛ. (1)

The map EΛ
X does not depend on the chosen ordering of the

sites. Since the unitaries u
(k)
x , u

(l)
y , x 6= y , k , l ∈ {0, 1, 2, 3},

either commute or anticommute, any reordering ũ(α) of u(α)
equals either u(α) or −u(α). Either way, the α-term in (1) is
not affected.
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For Λ ⊂ Λ′, we have EΛ′

X �AΛ
= EΛ

X . Therefore, we can
unambiguously define EX : Aloc

Γ → AX and extend by
continuity to AΓ.

Lemma
For all X ∈ P0(Γ), the map EX : AΓ → AΓ is a unity
preserving completely positive map with the following
properties:
(i) For A,B ∈ A+

X ,C ∈ AΓ, we have

EX (ACB) = AEX (C )B . (2)

(ii) ranEΛ ⊂ A+
X and A−Γ ⊂ kerEX .

(iii) For A ∈ AX c , we have

EX (A) = ω1/2(A)1l, (3)

where ω1/2 is the quasi-free state of maximal emtropy.
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Lemma
Let X ∈ P0(Γ), ε ≥ 0, and A ∈ A+

Γ , such that for all
B ∈ AΓ\X

‖[A,B]‖ ≤ ε‖B‖.

Then
‖A− EX (A)‖ ≤ ε.

In applications, the ε is provided by Lieb-Robinson bounds and
A is a time evolved local observable:

A = τt(A0), A0 ∈ AX0 .

and
ε = 2‖A‖ev |t||X0|F (d(X0, Γ \ X )).
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Gapped ground state phases
Our main motivation is to study gapped ground state phases
for fermion lattice systems, including topologically ordered
phases.
The term gapped refers to the existence of a positive lower
bound for the energy of excited states with respect to a
ground state, uniformly in the size of the system.
The term phase refers to regions in a interaction space where
the gap is positive (open). Phase transitions in interaction
space can occur when the gap vanishes (closes).
Topological Order and Discrete Symmetry Breaking are often
accompanied by a non-vanishing spectral gap.
The first problem to address is the stability of the spectral gap
itself.
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Spectral Flow and Automorphic Equivalence
Let Φs , 0,≤ s ≤ 1, be a differentiable family of short-range
interactions, i.e., assume that for some a,M > 0, the
interactions Φs satisfy

sup
x ,y∈Γ

ead(x ,y)
∑
X⊂Γ
x,y∈X

‖Φs(X )‖+ |X |‖∂sΦs(X )‖ ≤ M .

E.g,

Φs = Φ0 + sΨ

with both Φ0 and Ψ finite-range and uniformly bounded.
Let Λn ⊂ Γ, be a sequence of finite volumes, satisfying suitable
regularity conditions and suppose that the spectral gap above
the ground state (or a low-energy interval) of

HΛn(s) =
∑
X⊂Λn

Φs(X )

is uniformly bounded below by γ > 0.
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Let S(s) be the set of thermodynamic limits of ground states
of HΛn(s). E.g., if there is only one ground state, this set
contains the state obtained by taking the limit of the infinite
lattice: for each observable A,

ω(A) = lim
Λn→Γ
〈ψΛn | AψΛn〉
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Theorem (Bachmann-Michalakis-N-Sims 2012)
Under the assumptions of above, there exist automorphisms
αs of the algebra of observables such that S(s) = S0 ◦ αs , for
s ∈ [0, 1].
The automorphisms αs can be constructed as the
thermodynamic limit of the s-dependent “time” evolution for
an interaction Ω(X , s), which decays almost exponentially.

Concretely, the action of the quasi-local automophisms αs on
observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(s) ∈ AΛn is unitary solution of a Schrödinger
equation:

d

ds
Vn(s) = −iDn(s)Vn(s), Vn(0) = 1l,

with Dn(s) =
∑

X⊂Λn
Ω(X , s).
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The αs satisfy a Lieb-Robinson bound of the form

‖[αs(A),B]‖ ≤ ‖A‖‖B‖min(|X |, |Y |)(e ṽ s − 1)F (d(X ,Y )),

where A ∈ AX ,B ∈ AY , 0 < d(X ,Y ) is the distance between
X and Y . F (r) can be chosen of the form

F (r) = Ce
− 2

7
br

(log br)2 .

with b ∼ γ/v , where γ and v are bounds for the gap and the
Lieb-Robinson velocity of the interactions Φs , i.e., b ∼ aγM−1.

DΛ(s) =

∫ ∞
−∞

wγ(t)

∫ t

0

e iuHΛ(s)

[
d

ds
HΛ(s)

]
e−iuHΛ(s)du dt
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The projections EX are used to express DΛ(S) as a
quasi-short-range Hamiltonian:

Dn(s) =
∑
X⊂Λn

Ω(X , s).

These automorphisms implement what Hastings (2004+)
called quasi-adiabatic evolution and play a role in proving
stability of the gap, as well as the robustness of important
features of gapped ground state pages such as topological
order and its consequences. (cfr: Giuliani’s talk yesterday).
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Stability of the Spectral Gap
Statement of a stability theorem for finite volumes ‘without
boundary’.

HΛ(ε) =
∑
X⊂Λ

Φ(X ) + εΨ(X ),

where Φ and Ψ are even interactions and

I Φ(X ) ≥ 0 is finite-range, uniformly bounded, and
frustration free (cfr Read’s talk tomorrow), and
‖Ψ‖F <∞, F decays exponentially;

I 0 ∈ specHBx (r)(0) ⊂ {0} ∪ (γ,∞), x ∈ Λ, r ≥ r0, for
some γ > 0;

I ground state(s) of HΛ(0) satisfies LTQO.
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The Local Topological Quantum Order (LTQO) property was
first introduced by Bravyi, Hastings, and Michalakis.

Let PX denote the projection onto kerHX (0). Then, The
unperturbed model satisfies LTQO if there is a q > 0, and
α ∈ (0, 1), such that for all r ≤ (diamΛ)α, and all A ∈ A+

Bx (r),

‖PBx (r+`)APBx (r+`) − ωΛ(A)PBx (r+`)‖ ≤ C‖A‖`−q,

with
ωΛ(A) = Tr(PΛA)/Tr(PΛ).

Let EΛ(ε) = inf spec(HΛ(ε)). The gap of HΛ(ε) is defined
taking into account that the perturbation may produce a
splitting up to an amount δΛ of the zero eigenvalue of HΛ(0),
which is in general degenerate:

γδ(HΛ(ε)) = sup{η > 0 | (δ, δ+η)∩spec(HΛ(ε)−EΛ(ε)1l) = ∅}
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Theorem (Bravyi-Hastings-Michalakis 2011,Michalakis-Zwolak
2013, N-Sims-Young, in prep.)

Let HΛ(0) as above, and assume the model satisfies LTQO
with a sufifciently large q > 0. Then, for every 0 < γ0 < γ,
there exists ε0 > 0 such that, if |ε| < ε0, for sufficiently large
Λ, we have

γδΛ
(HΛ(ε)) ≥ γ0, if |ε| ≤ ε0,

where δΛ ≤ C (diamΛ)−p, for some p > 0.
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Outlook
I The same techniques can be used to prove robustness of

other properties, such topological order, discrete
symmetry breaking, ...

I Some non-frustration free models can be handled by
considering them as perturbations of frustration free
models.

I We hope to also prove stability of anyons, which describe
excitations of topologically non-trivial many-body ground
states (work in progress with Cha and Naaijkens), at least
for simple models such as Kitaev’s Toric Code model.

I Proving a gap, needed as a condition for stability, remains
a major challenge for non-commuting Hamiltonians in
d > 1.


