Stability of Frustration-Free Ground States of Lattice Fermion Systems

Bruno Nachtergaele

Joint work with

Robert Sims (U Arizona) and Amanda Young (U Arizona)

¹Based on work supported by the U.S. National Science Foundation under grant # DMS-1515850.

Outline

- Fermion lattice systems, interactions, dynamics
- Lieb-Robinson bounds, fermionic conditional expectation
- Gapped ground state phases
- The spectral flow a.k.a. quasi-adiabatic evolution
- Stability of the spectral gap
- Outlook

Fermion Lattice Systems

Spinless fermions on a lattice Γ (a countable set with metric d) are described by the CAR algebra $\mathcal{A}_{\Gamma} = \text{CAR}(\ell^2(\Gamma))$, generated by creation and annihilation operators a_x^+ , a_x , $x \in \Gamma$, which satisfy the Canonical Anticommutation Relations:

$$\{a_x, a_y\} = \{a_x^+, a_y^+\} = 0, \quad \{a_x^+, a_y\} = \delta_{x,y}\mathbb{1}, \quad x, y \in \Gamma.$$

Spin and/or band indices can be included by extending Γ , e.g., by considering $\tilde{\Gamma} = \Gamma \times \{1, \dots, n\}$. Let $\mathcal{P}_0(\Gamma)$ denote the collection of finite subsets of Γ . For $X \subset \Gamma$, $A = CAP(\ell^2(X))$ is naturally identified with the

For $X \subset \Gamma$, $\mathcal{A}_X = CAR(\ell^2(X))$ is naturally identified with the subalgebra of \mathcal{A}_{Γ} generated the a_x, a_x^+ , with $x \in X$.

Let \mathcal{A}_X^+ and \mathcal{A}_X^- denote the subspaces spanned by the even and odd monomials in $a_x, a_x^+, x \in X$. \mathcal{A}_Λ^+ is a subalgebra of \mathcal{A}_Λ , but \mathcal{A}_Λ^- is not. Note that if $X \cap Y = \emptyset$, we have

$$AB = BA$$
, for all $A \in \mathcal{A}_X^+, B \in \mathcal{A}_Y$.

An interaction Φ for a fermion system on Γ is defined as a map $\mathcal{P}_0(\Gamma) \to \mathcal{A}_{\Gamma}^+$ such that $\Phi(X) = \Phi(X)^* \in \mathcal{A}_X^+$. For finite Λ , we define the Hamiltonian

$$H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X).$$

Note that we only allow interactions terms that preserve the fermion number parity.

For finite $\Lambda \subset \Gamma$, the Heisenberg dynamics is defined in the usual way

$$au_t^{\Lambda}(A) = e^{itH_{\Lambda}}Ae^{-itH_{\Lambda}}, \quad A \in \mathcal{A}_{\Lambda}.$$

If Φ is not too long-range, in the same way as for spin systems, the thermodynamic limit

$$\lim_{\Lambda\to\Gamma}\tau^{\Lambda}_t(A)=\tau_t(A),\quad A\in\mathcal{A}_{\Gamma}^{\mathrm{loc}}=\bigcup_{\Lambda\in\mathcal{P}_0(\Lambda)}\mathcal{A}_{\Lambda},$$

defines a strongly continuous one-parameter group of automorphisms on $\mathcal{A}_{\Gamma} = \overline{\mathcal{A}_{\Gamma}^{\mathrm{loc}}}$. A standard way to show this is using Lieb-Robinson bounds for interactions with a finite *F*-norm:

$$\|\Phi\|_{F} = \sup_{x,y\in\Gamma} F(d(x,y))^{-1} \sum_{\substack{X\in\mathcal{P}_{0}(\Gamma)\\x,y\in X}} \|\Phi(X)\|,$$

for a decreasing positive function $F \in L^1(\mathbb{R}^+)$, such that $\sum_{z \in \Gamma} F(d(x, z))F(d(z, y)) \leq F(d(x, y))$, $x, y \in \Gamma$. We can also include time-dependent interactions. For simplicity, we assume that the time-dependence of all interactions is continuous in the operator norm. In the time-dependent case, the role of v|t|, where v is the Lieb-Robinson velocity, is played by the quantity

$$r_{s,t}(\Phi,F) = 2 \int_{\min(s,t)}^{\max(s,t)} \|\Phi(\cdot,r)\|_F dr.$$

Theorem (Lieb-Robinson Bound for Fermions) Let Φ be a time-dependent even interaction $\mathcal{P}_0(\Gamma) \to \mathcal{A}_{\Gamma}^{\mathrm{loc}}$. Let $X, Y \in \mathcal{P}_0(\Gamma)$ with $X \cap Y = \emptyset$. Then, for any $\Lambda \in \mathcal{P}_0(\Gamma)$ with $X \cup Y \subset \Lambda$ and any $A \in \mathcal{A}_X^+$ and $B \in \mathcal{A}_Y$, we have

$$\left\|\left[\tau_{t,s}^{\Lambda}(A),B\right]\right\| \leq 2\|A\|\|B\|\left(e^{r_{s,t}(\Phi,F)}-1\right)D(X,Y)$$

for all $t, s \in \mathbb{R}$. Here the quantity D(X, Y) is given by

$$D(X, Y) = \min \left\{ \sum_{x \in X} \sum_{y \in \partial_{\Phi} Y} F(d(x, y)), \sum_{x \in \partial_{\Phi} X} \sum_{y \in Y} F(d(x, y)) \right\}$$

The Φ -boundary of X is defined by

$$\partial_{\Phi}(X) = \{x \in X \mid \text{exist } Z, \Phi(Z) \neq 0, x \in Z, Z \cap X^{c} \neq \emptyset\}$$

Remark: one can also estimate $\|\{\tau_{t,s}^{\Lambda}(A), B\}\|$, for $A \in \mathcal{A}_X^$ and $B \in \mathcal{A}_Y^-$. Lieb-Robinson 1972, N-Sims 2006, Hastings-Koma 2006, N-Sims-Ogata 2006, ..., Bru-Pedra 2016, N-Sims-Young in prep.

Conditional Expectation for Fermions

Lieb-Robinson Bounds express the approximate locality of the dynamics: time-evolved local observables are approximately local.

In order to express this quantitatively we need maps $\mathbb{E}_X^{\Lambda} : \mathcal{A}_{\Lambda} \to \mathcal{A}_X, X \subset \Lambda \in \mathcal{P}_0(\Gamma)$, with the properties of a conditional expectation.

For each $x \in \Gamma$, define

$$u_x^{(0)} = 1, \ u_x^{(1)} = a_x^+ + a_x, \ u_x^{(2)} = a_x^+ - a_x, \ u_x^{(3)} = 1 - 2a_x^+ a_x.$$

It follows from the CAR that these are unitaries. Clearly, $u_x^{(0)}, u_x^{(3)} \in \mathcal{A}^+_{\{x\}}$, and $u_x^{(1)}, u_x^{(2)} \in \mathcal{A}^-_{\{x\}}$. Therefore, $u_x^{(0)}$ and $u_x^{(3)}$ commute with the elements of $\mathcal{A}_{\Gamma \setminus \{x\}}$, and $u_x^{(1)}$ and $u_x^{(2)}$ commute with $\mathcal{A}^+_{\Gamma \setminus \{x\}}$ and anticommute with $\mathcal{A}^-_{\Gamma \setminus \{x\}}$.

Fix a finite $\Lambda \subset \Gamma$ and X a proper subset of Λ . Fix an ordering of the sites: $\Lambda \setminus X = \{x_1, \ldots, x_k\}$. Then, for each $\alpha_1, \ldots, \alpha_k \in \{0, 1, 2, 3\}$ define the unitary element $u(\alpha) \in \mathcal{A}_{\Lambda}$ by

$$u(\alpha) = u_{x_1}^{(\alpha_1)} \cdots u_{x_k}^{(\alpha_k)}$$

The following expression defines a unity-preserving completely positive map $\mathcal{A}_{\Lambda} \rightarrow \mathcal{A}_{\Lambda}$:

$$\mathbb{E}_{X}^{\Lambda}(A) = \frac{1}{4^{k}} \sum_{\alpha \in \{0,1,2,3\}^{k}} u(\alpha)^{*} A u(\alpha), \quad A \in \mathcal{A}_{\Lambda}.$$
(1)

The map \mathbb{E}_X^{Λ} does not depend on the chosen ordering of the sites. Since the unitaries $u_x^{(k)}, u_y^{(l)}, x \neq y, k, l \in \{0, 1, 2, 3\}$, either commute or anticommute, any reordering $\tilde{u}(\alpha)$ of $u(\alpha)$ equals either $u(\alpha)$ or $-u(\alpha)$. Either way, the α -term in (1) is not affected.

For $\Lambda \subset \Lambda'$, we have $\mathbb{E}_X^{\Lambda'} \upharpoonright_{\mathcal{A}_{\Lambda}} = \mathbb{E}_X^{\Lambda}$. Therefore, we can unambiguously define $\mathbb{E}_X : \mathcal{A}_{\Gamma}^{\mathrm{loc}} \to \mathcal{A}_X$ and extend by continuity to \mathcal{A}_{Γ} .

Lemma

For all $X \in \mathcal{P}_0(\Gamma)$, the map $\mathbb{E}_X : \mathcal{A}_{\Gamma} \to \mathcal{A}_{\Gamma}$ is a unity preserving completely positive map with the following properties:

(i) For
$$A,B\in\mathcal{A}_{X}^{+},C\in\mathcal{A}_{\Gamma}$$
, we have

$$\mathbb{E}_X(ACB) = A\mathbb{E}_X(C)B.$$
 (2)

(ii) $\operatorname{ran}\mathbb{E}_{\Lambda} \subset \mathcal{A}_{X}^{+}$ and $\mathcal{A}_{\Gamma}^{-} \subset \operatorname{ker}\mathbb{E}_{X}$. (iii) For $A \in \mathcal{A}_{X^{c}}$, we have

$$\mathbb{E}_{X}(A) = \omega^{1/2}(A)\mathbb{1}, \qquad (3)$$

where $\omega^{1/2}$ is the quasi-free state of maximal emtropy.

Lemma Let $X \in \mathcal{P}_0(\Gamma)$, $\epsilon \ge 0$, and $A \in \mathcal{A}_{\Gamma}^+$, such that for all $B \in \mathcal{A}_{\Gamma \setminus X}$ $\|[A, B]\| \le \epsilon \|B\|.$

Then

$$\|A - \mathbb{E}_X(A)\| \leq \epsilon.$$

In applications, the ϵ is provided by Lieb-Robinson bounds and A is a time evolved local observable:

$$A = \tau_t(A_0), \quad A_0 \in \mathcal{A}_{X_0}.$$

and

$$\epsilon = 2 \|A\| e^{\nu|t|} |X_0| F(d(X_0, \Gamma \setminus X)).$$

11

Gapped ground state phases

Our main motivation is to study gapped ground state phases for fermion lattice systems, including topologically ordered phases.

The term gapped refers to the existence of a positive lower bound for the energy of excited states with respect to a ground state, uniformly in the size of the system.

The term phase refers to regions in a interaction space where the gap is positive (open). Phase transitions in interaction space can occur when the gap vanishes (closes).

Topological Order and Discrete Symmetry Breaking are often accompanied by a non-vanishing spectral gap.

The first problem to address is the stability of the spectral gap itself.

Spectral Flow and Automorphic Equivalence Let $\Phi_s, 0, \le s \le 1$, be a differentiable family of short-range interactions, i.e., assume that for some a, M > 0, the interactions Φ_s satisfy

$$\sup_{x,y\in\Gamma} e^{ad(x,y)} \sum_{X\subset\Gamma\atop x,y\in X} \|\Phi_s(X)\| + |X|\|\partial_s\Phi_s(X)\| \leq M.$$

E.g,

$$\Phi_s = \Phi_0 + s \Psi$$

with both Φ_0 and Ψ finite-range and uniformly bounded. Let $\Lambda_n \subset \Gamma$, be a sequence of finite volumes, satisfying suitable regularity conditions and suppose that the spectral gap above the ground state (or a low-energy interval) of

$$H_{\Lambda_n}(s) = \sum_{X \subset \Lambda_n} \Phi_s(X)$$

is uniformly bounded below by $\gamma > 0$.

14

Let S(s) be the set of thermodynamic limits of ground states of $H_{\Lambda_n}(s)$. E.g., if there is only one ground state, this set contains the state obtained by taking the limit of the infinite lattice: for each observable A,

$$\omega(A) = \lim_{\Lambda_n \to \Gamma} \langle \psi_{\Lambda_n} \mid A \psi_{\Lambda_n} \rangle$$

Theorem (Bachmann-Michalakis-N-Sims 2012)

Under the assumptions of above, there exist automorphisms α_s of the algebra of observables such that $S(s) = S_0 \circ \alpha_s$, for $s \in [0, 1]$.

The automorphisms α_s can be constructed as the thermodynamic limit of the s-dependent "time" evolution for an interaction $\Omega(X, s)$, which decays almost exponentially.

Concretely, the action of the quasi-local automophisms $\alpha_{\rm s}$ on observables is given by

$$\alpha_s(A) = \lim_{n \to \infty} V_n^*(s) A V_n(s)$$

where $V_n(s) \in A_{\Lambda_n}$ is unitary solution of a Schrödinger equation:

$$rac{d}{ds}V_n(s) = -iD_n(s)V_n(s), \quad V_n(0) = \mathbb{1},$$

or $D_n(s) = \sum_{X \subset \Lambda_n} \Omega(X, s).$

with

The α_s satisfy a Lieb-Robinson bound of the form

 $\|[\alpha_s(A), B]\| \le \|A\| \|B\| \min(|X|, |Y|)(e^{\tilde{v}s} - 1)F(d(X, Y)),$

where $A \in A_X, B \in A_Y$, 0 < d(X, Y) is the distance between X and Y. F(r) can be chosen of the form

$$F(r) = Ce^{-\frac{2}{7}\frac{br}{(\log br)^2}}$$

with $b \sim \gamma/\nu$, where γ and ν are bounds for the gap and the Lieb-Robinson velocity of the interactions Φ_s , i.e., $b \sim a\gamma M^{-1}$.

$$D_{\Lambda}(s) = \int_{-\infty}^{\infty} w_{\gamma}(t) \int_{0}^{t} e^{iuH_{\Lambda}(s)} \left[rac{d}{ds} H_{\Lambda}(s)
ight] e^{-iuH_{\Lambda}(s)} du dt$$

The projections \mathbb{E}_X are used to express $D_{\Lambda}(S)$ as a quasi-short-range Hamiltonian:

$$D_n(s) = \sum_{X \subset \Lambda_n} \Omega(X, s).$$

These automorphisms implement what Hastings (2004+) called quasi-adiabatic evolution and play a role in proving stability of the gap, as well as the robustness of important features of gapped ground state pages such as topological order and its consequences. (cfr: Giuliani's talk yesterday).

Stability of the Spectral Gap

Statement of a stability theorem for finite volumes 'without boundary'.

$$H_{\Lambda}(\epsilon) = \sum_{X \subset \Lambda} \Phi(X) + \epsilon \Psi(X),$$

where Φ and Ψ are even interactions and

- Φ(X) ≥ 0 is finite-range, uniformly bounded, and frustration free (cfr Read's talk tomorrow), and ||Ψ||_F < ∞, F decays exponentially;
- 0 ∈ spec H_{B_x(r)}(0) ⊂ {0} ∪ (γ,∞), x ∈ Λ, r ≥ r₀, for some γ > 0;
- ground state(s) of $H_{\Lambda}(0)$ satisfies LTQO.

The Local Topological Quantum Order (LTQO) property was first introduced by Bravyi, Hastings, and Michalakis.

Let P_X denote the projection onto ker $H_X(0)$. Then, The unperturbed model satisfies LTQO if there is a q > 0, and $\alpha \in (0, 1)$, such that for all $r \leq (\operatorname{diam} \Lambda)^{\alpha}$, and all $A \in \mathcal{A}^+_{\mathcal{B}_X(r)}$,

$$\|P_{B_{\mathsf{x}}(r+\ell)}AP_{B_{\mathsf{x}}(r+\ell)}-\omega_{\mathsf{A}}(A)P_{B_{\mathsf{x}}(r+\ell)}\|\leq C\|A\|\ell^{-q},$$

with

$$\omega_{\Lambda}(A) = \mathrm{Tr}(P_{\Lambda}A)/\mathrm{Tr}(P_{\Lambda}).$$

Let $E_{\Lambda}(\epsilon) = \inf \operatorname{spec}(H_{\Lambda}(\epsilon))$. The gap of $H_{\Lambda}(\epsilon)$ is defined taking into account that the perturbation may produce a splitting up to an amount δ_{Λ} of the zero eigenvalue of $H_{\Lambda}(0)$, which is in general degenerate:

$$\gamma_{\delta}(H_{\Lambda}(\epsilon)) = \sup\{\eta > 0 \mid (\delta, \delta + \eta) \cap \operatorname{spec}(H_{\Lambda}(\epsilon) - E_{\Lambda}(\epsilon)\mathbb{1}) = \emptyset\}$$

Theorem (Bravyi-Hastings-Michalakis 2011, Michalakis-Zwolak 2013, N-Sims-Young, in prep.)

Let $H_{\Lambda}(0)$ as above, and assume the model satisfies LTQO with a sufficiently large q > 0. Then, for every $0 < \gamma_0 < \gamma$, there exists $\epsilon_0 > 0$ such that, if $|\epsilon| < \epsilon_0$, for sufficiently large Λ , we have

 $\gamma_{\delta_{\Lambda}}(H_{\Lambda}(\epsilon)) \geq \gamma_{0}, \text{ if } |\epsilon| \leq \epsilon_{0},$

where $\delta_{\Lambda} \leq C(\operatorname{diam} \Lambda)^{-p}$, for some p > 0.

Outlook

- The same techniques can be used to prove robustness of other properties, such topological order, discrete symmetry breaking, ...
- Some non-frustration free models can be handled by considering them as perturbations of frustration free models.
- We hope to also prove stability of anyons, which describe excitations of topologically non-trivial many-body ground states (work in progress with Cha and Naaijkens), at least for simple models such as Kitaev's Toric Code model.
- Proving a gap, needed as a condition for stability, remains a major challenge for non-commuting Hamiltonians in d > 1.