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BCS states

We consider a gas of spin 1/2 fermions, confined to a domain
Ω ⊂ Rd , at low density and zero temperature. The particles
interact via a (somewhat attractive) two body potential.

Assumption: The system state is a BCS (quasi-free) state. It is
then fully described by the two operators

γ = one body density matrix,

α = pairing wave function

on L2(Ω). They satisfy the operator inequalities 0 ≤ γ ≤ 1 and
αα ≤ γ(1− γ).

We denote the operator kernels of γ and α by γ(x , y) and α(x , y).



BCS energy in a domain

We distinguish two scales, a microscopic one of O(h) and a
macroscopic one of O(1).

– Macroscopic: Domain Ω; weak external field h2W .

– Microscopic: Kinetic energy of fermions; two body
interaction V (attractive enough s.t. −∆ + V has a bound
state).

BCS energy

EBCS
µ (γ, α) :=tr

[
(−h2∆Ω + h2W − µ)γ

]
+

∫∫
Ω2

V

(
x − y

h

)
|α(x , y)|2dxdy

for “admissible” γ and α. Here µ < 0 is the chemical potential
and −∆Ω is the Dirichlet Laplacian (particles are confined).



Condensate of pairs

Heuristics: µ is chosen s.t. we are at low density. The fermions
form tightly bound pairs. Low density ⇒ pairs are far apart ⇒
pairs look like bosons to one another ⇒ pairs form a BEC.

Macroscopic description of BEC is given by Gross-Pitaevskii (GP)
energy

EGP
D (ψ) :=

∫
Ω

(
|∇ψ|2 + (W − D)|ψ|2 + g |ψ|4

)
dx .

The minimizer ψ : Ω→ R+ is the “order parameter” and describes
the macroscopic condensate density.

D ∈ R and g > 0 are parameters (for us they will be determined
by the microscopic BCS theory).



Literature

Goal: Derive the effective, nonlinear GP theory from EBCS
µ as

h ↓ 0.

Previous results:

– Hainzl-Seiringer 2012; Hainzl-Schlein 2012;
Bräunlich-Hainzl-Seiringer 2016; in this context.

– Frank-Hainzl-Seiringer-Solovej 2012; at positive temperature
and density.

Idea of the derivation: Integrate out microscopic relative
coordinate x−y

h of fermion pairs. Center-of-mass coordinate
X = x+y

2 is macroscopic and described by GP theory.
(Semiclassical methods.)

The previous results are for systems without boundary, i.e. Ω = Rd

or Ω is the torus. We are interested in the effect of the Dirichlet
boundary conditions on the GP theory.



Main result
Theorem. Assume that the pair binding energy is negative:

−Eb := inf specL2(Rd )(−∆ + V ) < 0.

Set the chemical potential µ = −Eb + Dh2 for some D ∈ R. If Ω is
nice, then as h ↓ 0,

min
(γ,α) adm.

EBCS
−Eb+Dh2(γ, α) = h4−d min

ψ∈H1
0 (Ω)
EGP
D (ψ) + O(h4−d+cΩ)

with cΩ depending on the regularity of Ω (cΩ > 0 for bounded
Lipschitz domains, cΩ = 1 for convex domains,...).

Remarks:

– On RHS, minimization over ψ ∈ H1
0 (Ω) means the Dirichlet

b.c. are preserved for GP energy.

– The choice µ = −Eb + Dh2 indeed corresponds to low density,
by a duality argument.



A linear model problem
A particle pair described by the two body Schrödinger operator

Hh :=
h2

2
(−∆Ω,x −∆Ω,y ) + V

(
x − y

h

)
.

Goal: Find the g.s. energy of Hh on L2(Ω× Ω), as h ↓ 0.
Natural to transform Hh into center-of-mass coordinates

X :=
x + y

2
, r := x − y ,

and use −1
2 ∆x − 1

2 ∆y = −∆r − 1
4 ∆X to get

−h2∆r + V (r/h)− h2

4
∆X .

If Hh were defined on Rd , then the r and X variable would
decouple and the g.s. energy would be the sum of those for the r -
and X -dependent part.

However, the boundary conditions prevent this decoupling; Hh

describes a true two body problem for fixed h > 0.



Result for the linear model problem

Good news: X and r decouple again, to the first two orders in h.

Theorem. As h ↓ 0, the two body operator Hh has the g.s. energy

inf specL2(Ω×Ω)Hh = −Eb + Dch
2 + O(h2+δ).

for some δ > 0. Here we defined the g.s. energies in the relative
and center-of-mass variables

−Eb := inf specL2(Rd )(−∆ + V ) < 0,

Dc := inf specL2(Ω)

(
−1

4
∆X

)
∈ R.



Proof idea for the linear model problem
Let Ω = [0, 1]. This becomes a diamond in the (X , r) plane.

Approach to the g.s. energy of Hh: Upper bound from trial state
supported in the small rectangle I , where `(h) = h log(h−q)� h.
Uses exponential decay of the Schrödinger eigenfunction α0(r/h).
Lower bound by using that Dirichlet energies go down when
domain is increased (to the strip II ). Note that X and r decouple
on the strip.
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