Condensation of fermion pairs in a domain

Marius Lemm (Caltech)

joint with Rupert L. Frank and Barry Simon

QMath 13, Georgia Tech, October 8, 2016

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BCS states

We consider a gas of spin 1/2 fermions, confined to a domain $\Omega \subset \mathbb{R}^d$, at low density and zero temperature. The particles interact via a (somewhat attractive) two body potential.

Assumption: The system state is a BCS (quasi-free) state. It is then fully described by the two operators

 $\gamma =$ one body density matrix, $\alpha =$ pairing wave function

on $L^2(\Omega)$. They satisfy the operator inequalities $0 \le \gamma \le 1$ and $\alpha \overline{\alpha} \le \gamma (1 - \gamma)$.

We denote the operator kernels of γ and α by $\gamma(x, y)$ and $\alpha(x, y)$.

BCS energy in a domain

We distinguish two scales, a microscopic one of O(h) and a macroscopic one of O(1).

- **Macroscopic:** Domain Ω ; weak external field $h^2 W$.
- **Microscopic:** Kinetic energy of fermions; two body interaction V (attractive enough s.t. $-\Delta + V$ has a bound state).

BCS energy

$$\begin{split} \mathcal{E}^{\mathrm{BCS}}_{\mu}(\gamma,\alpha) &:= \mathsf{tr}\left[(-h^2 \Delta_{\Omega} + h^2 W - \mu) \gamma \right] \\ &+ \iint_{\Omega^2} V\left(\frac{x - y}{h} \right) |\alpha(x,y)|^2 \mathrm{d}x \mathrm{d}y \end{split}$$

for "admissible" γ and α . Here $\mu < 0$ is the chemical potential and $-\Delta_{\Omega}$ is the Dirichlet Laplacian (particles are confined).

Condensate of pairs

Heuristics: μ is chosen s.t. we are at low density. The fermions form tightly bound pairs. Low density \Rightarrow pairs are far apart \Rightarrow pairs look like bosons to one another \Rightarrow pairs form a BEC.

Macroscopic description of BEC is given by Gross-Pitaevskii (GP) energy

$$\mathcal{E}_D^{\mathrm{GP}}(\psi) := \int_\Omega \left(|
abla \psi|^2 + (W-D) |\psi|^2 + g |\psi|^4
ight) \mathrm{d}x.$$

The minimizer $\psi: \Omega \to \mathbb{R}_+$ is the "order parameter" and describes the macroscopic condensate density.

 $D \in \mathbb{R}$ and g > 0 are parameters (for us they will be determined by the microscopic BCS theory).

Literature

Goal: Derive the effective, nonlinear GP theory from $\mathcal{E}^{\mathrm{BCS}}_{\mu}$ as $h \downarrow 0$.

Previous results:

- Hainzl-Seiringer 2012; Hainzl-Schlein 2012;
 Bräunlich-Hainzl-Seiringer 2016; in this context.
- Frank-Hainzl-Seiringer-Solovej 2012; at positive temperature and density.

Idea of the derivation: Integrate out microscopic relative coordinate $\frac{x-y}{h}$ of fermion pairs. Center-of-mass coordinate $X = \frac{x+y}{2}$ is macroscopic and described by GP theory. (Semiclassical methods.)

The previous results are for systems without boundary, i.e. $\Omega = \mathbb{R}^d$ or Ω is the torus. We are interested in the effect of the Dirichlet boundary conditions on the GP theory.

Main result

Theorem. Assume that the pair binding energy is negative:

$$-E_b := \inf \operatorname{spec}_{L^2(\mathbb{R}^d)}(-\Delta + V) < 0.$$

Set the chemical potential $\mu = -E_b + Dh^2$ for some $D \in \mathbb{R}$. If Ω is nice, then as $h \downarrow 0$,

$$\min_{(\gamma,\alpha) \text{ adm.}} \mathcal{E}_{-E_b+Dh^2}^{\mathrm{BCS}}(\gamma,\alpha) = h^{4-d} \min_{\psi \in H^1_0(\Omega)} \mathcal{E}_D^{\mathrm{GP}}(\psi) + O(h^{4-d+c_\Omega})$$

with c_{Ω} depending on the regularity of Ω ($c_{\Omega} > 0$ for bounded Lipschitz domains, $c_{\Omega} = 1$ for convex domains,...).

Remarks:

- On RHS, minimization over $\psi \in H_0^1(\Omega)$ means the Dirichlet b.c. are preserved for GP energy.
- The choice $\mu = -E_b + Dh^2$ indeed corresponds to low density, by a duality argument.

A linear model problem

A particle pair described by the two body Schrödinger operator

$$H_h := rac{h^2}{2} \left(- \Delta_{\Omega,x} - \Delta_{\Omega,y}
ight) + V \left(rac{x-y}{h}
ight)$$

Goal: Find the g.s. energy of H_h on $L^2(\Omega \times \Omega)$, as $h \downarrow 0$. Natural to transform H_h into center-of-mass coordinates

$$\begin{split} X &:= \frac{x+y}{2}, \qquad r := x-y, \\ \text{and use} &- \frac{1}{2}\Delta_x - \frac{1}{2}\Delta_y = -\Delta_r - \frac{1}{4}\Delta_X \text{ to get} \\ &- h^2\Delta_r + V(r/h) - \frac{h^2}{4}\Delta_X. \end{split}$$

If H_h were defined on \mathbb{R}^d , then the *r* and *X* variable would decouple and the g.s. energy would be the sum of those for the *r*-and *X*-dependent part.

However, the boundary conditions prevent this decoupling; H_h describes a true two body problem for fixed $h \ge 0$, $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Result for the linear model problem

Good news: X and r decouple again, to the first two orders in h.

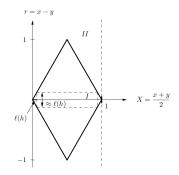
Theorem. As $h \downarrow 0$, the two body operator H_h has the g.s. energy

$$\inf \operatorname{spec}_{L^2(\Omega \times \Omega)} H_h = -E_b + D_c h^2 + O(h^{2+\delta}).$$

for some $\delta > 0.$ Here we defined the g.s. energies in the relative and center-of-mass variables

$$-E_b := \inf \operatorname{spec}_{L^2(\mathbb{R}^d)}(-\Delta + V) < 0,$$
$$D_c := \inf \operatorname{spec}_{L^2(\Omega)}\left(-\frac{1}{4}\Delta_X\right) \in \mathbb{R}.$$

Proof idea for the linear model problem Let $\Omega = [0, 1]$. This becomes a diamond in the (X, r) plane.



Approach to the g.s. energy of H_h : Upper bound from trial state supported in the small rectangle *I*, where $\ell(h) = h \log(h^{-q}) \gg h$. Uses exponential decay of the Schrödinger eigenfunction $\alpha_0(r/h)$. Lower bound by using that Dirichlet energies go down when domain is increased (to the strip II). Note that X and r decouple on the strip. ・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Thank you for your attention!