Spectral theoretic aspects of the BCS theory of superconductivity

Christian HAINZL
(Universität Tübingen)

QMath13, Atlanta 2016

The critical temperature of a general many-particle system is associated with the following two-particle operator, corresponding to the linearized BdG-equation,

$$
\begin{gathered}
M_{T}+V: L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right), \quad d=2,3 \\
M_{T} \alpha(x, y)=\frac{\mathfrak{h}_{x}+\mathfrak{h}_{y}}{\tanh \frac{\mathfrak{h}_{x}}{2 T}+\tanh \frac{\mathfrak{h}_{y}}{2 T}} \alpha(x, y), \quad V \alpha(x, y)=V(x-y) \alpha(x, y) .
\end{gathered}
$$

$M_{T}+V$ ist the second derivative of the BCS-functional.
We consider particles (a) in small, slowly varying bounded external magnetic A and electric W potential, rep. (b) in a small, constant magnetic field \mathbf{B} :
(a)

$$
\mathfrak{h}=(-i \nabla+h A(h x))^{2}+h^{2} W(h x)-\mu
$$

(b)

$$
\mathfrak{h}=\left(-i \nabla+\frac{\mathbf{B}}{2} \wedge x\right)^{2}-\mu
$$

$h \simeq \sqrt{B}$ is a small parameter
μ chemical potential, T temperature

Critical temperature

We define the critical tempemperature $T_{c}(h), T_{c}(B)$ as the parameter T, which satisfies

$$
\inf \sigma\left(M_{T}+V\right)=0
$$

How does the critical temperature $T_{c}(h)$, depend on A, W, respectively $T_{c}(B)$ depend on B ?

Idea: We can handle it in the translation-invariant case $W=A=\mathbf{B}=0$, afterwards we "perturb in h, B ".

Difficulties:

- M_{T} is an ugly symbol.
- $\mathbf{B} \wedge x$ is not a bounded perturbation
- the components of ($-i \nabla+\mathbf{B} \wedge x$) do not commute

We will deal with the Birman-Schwinger version

$$
1+V^{1 / 2} M_{T}^{-1}|V|^{1 / 2}
$$

T-I case $W=A=B=0$

In the translation-invariant case $W=A=B=0$ the symbol M_{T} is multiplication operator in momentum space.

$$
\widehat{M_{T} \alpha}(p, q)=\frac{p^{2}-\mu+q^{2}-\mu}{\tanh \frac{p^{2}-\mu}{2 T}+\tanh \frac{q^{2}-\mu}{2 T}} \hat{\alpha}(p, q)
$$

One has the algebraic inequality

$$
M_{T}(p, q) \geq \frac{1}{2}\left(\frac{p^{2}-\mu}{\tanh \frac{p^{2}-\mu}{2 T}}+\frac{q^{2}-\mu}{\tanh \frac{q^{2}-\mu}{2 T}}\right) \geq 2 T
$$

since

$$
\frac{x}{\tanh \frac{x}{2 T}} \geq 2 T
$$

$M_{T}+V$ is still a two-particle system. We first need to reduce it to an appropriate one-particle system.

Simple toy model

Replace $M_{T}(p, q)$ by $p^{2}+q^{2}+2 T$.

$$
\begin{gathered}
T_{c}: \inf \sigma\left(-\Delta_{x}-\Delta_{y}+2 T+V(x-y)\right)=0 \\
r=x-y \quad X=\frac{x+y}{2} \\
k=\frac{p-q}{2} \quad \ell=p+q
\end{gathered}
$$

With $p=k+\ell / 2$ and $q=k-\ell / 2$, we get

$$
p^{2}+q^{2}+2 T+V=2 k^{2}+\ell^{2} / 2+2 T+V=-2 \Delta_{r}+V(r)+2 T-\Delta_{x} / 2,
$$

hence

$$
\inf \sigma\left(-\Delta_{r}+V(r) / 2+T_{c}\right)=0 \quad \Leftrightarrow T_{c}=-e_{0},
$$

where e_{0} is the smallest eigenvalue of $-\Delta_{r}+V / 2$.
T_{c} is given by the one-particle operator for $\ell=0$.

$M_{T}+V$ for $\ell=0[H H S S]$

At $\ell=0$

$$
\begin{aligned}
& M_{T}(k+\ell / 2, k-\ell / 2) \\
& \quad=K_{T}(k)=\frac{k^{2}-\mu}{\tanh \left(\left(k^{2}-\mu\right) / 2 T\right)}
\end{aligned}
$$

For $\ell=0$ one gets the one-particle operator

$$
K_{T}+V(r): L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)
$$

Critical temperature: Since the operator $K_{T}+V$ is monotone in T, there exists unique $0 \leq T_{c}<\infty$ such that

$$
\inf \sigma\left(K_{T_{c}}+V\right)=0,
$$

respectively 0 is the lowest eigenvalue of $K_{T_{c}}+V$.
T_{c} is the critical temperature for the effective one particle system, if one reduces to translation-invariant states $(\ell=0)$.

Known results about $K_{T}+V$

- $\lim _{T \rightarrow 0} \frac{p^{2}-\mu}{\tanh \frac{p^{2}-\mu}{2 T}}=\left|p^{2}-\mu\right|$, hence

$$
T_{c}>0 \text { iff } \inf \sigma\left(\left|p^{2}-\mu\right|+V\right)<0
$$

- $\frac{1}{\left|p^{2}-\mu\right|}$ has same type of singularity as $1 / p^{2}$ in $2 D[\mathrm{~S}]$.
- In [FHNS, HS08, HS16] we classify V 's such that $T_{c}>0$. (E.g. $\int V<0$ is enough)
- In [LSW] shown that $\left|p^{2}-\mu\right|+V$ has ∞ many eigenvalues if $V \leq 0$.
- the operator appeared in terms of scattering theory [BY93]

```
[FHNS] R. Frank, C. Hainzl, S. Naboko, R. Seiringer, Journal of Geometric Analysis, 17, No 4, 549-567 (2007)
[HS08] C. Hainzl, R. Seiringer, Phys. Rev. B, 77, 184517 (2008)
[HS16] C. Hainzl, R. Seiringer, J. Math. Phys. }57\mathrm{ (2016), no. 2, }02110
[BY93] Birman, Yafaev, St. Petersburg Math. J. 4, 1055-1079 (1993)
[LSW] A. Laptev, O. Safronov, T. WeidI, Nonlinear problems in mathematical physics and related topics I, pp. 233-246, Int. Math. Ser. (N.Y.),
Kluwer/Plenum, New York (2002)
[S] B. Simon, Ann. Phys. 97, 279-288 (1976)
```


Lemma (FHSS12)

Let the 0 eigenvector of $K_{T_{c}}+V$ be non-degenerate. Then
(a)

$$
M_{T_{c}}+V \gtrsim-\Delta_{X}
$$

(b)

$$
\inf \sigma\left(M_{T_{c}}+V\right)=0
$$

meaning T_{c} for the two-particle system is determined by the one-particle operator $K_{T}+V$ at $\ell=0$.

The proof of (a) is non-trivial, because

$$
M_{T}(k+\ell / 2, k-\ell / 2) \nsupseteq M_{T}(k, k)=K_{T}(k) .
$$

(a) only holds for $V=V(x-y)$, not for general $V(x, y)$.
[FHSS12] R.L. Frank, C. Hainzl, R. Seiringer, J.P. Solovej, J. Amer. Math. Soc. 25, 667-713 (2012).

Theorem

Let $V \leq 0$, then there are parameters $\lambda_{0}, \lambda_{1}, \lambda_{2}$, depending on V, μ, such that
(a) [FHSS14], with $\mathfrak{h}=(-i \nabla+h A(h x))^{2}+h^{2} W(h x)-\mu$, one has

$$
T_{c}(h)=T_{c}-h^{2} D_{c}+o\left(h^{2}\right),
$$

where

$$
D_{c}=\frac{1}{\lambda_{2}} \inf \sigma\left(\lambda_{0}(-i \nabla+2 A(x))^{2}+\lambda_{1} W\right)
$$

the lowest eigenvalue of the linearized Ginzburg-Landau operator, A, W bounded.
(b) [FHL16], with $\mathfrak{h}=\left(-i \nabla+\frac{\mathrm{B}}{2} \wedge x\right)^{2}-\mu$, one has

$$
T_{c}(B)=T_{c}-\frac{\lambda_{0}}{\lambda_{2}} 2 B+o(B),
$$

where

$$
2 B=\inf \sigma\left((-i \nabla+\mathbf{B} \wedge x)^{2}\right) .
$$

The (magnetic) Laplace in the Ginzburg-Landau is a universal property.

Ingredients of the proof

We consider the Birman-Schwinger version and define

$$
T_{c}(h), T_{c}(B): \inf \sigma\left(1-|V|^{1 / 2} L_{T}|V|^{1 / 2}\right)=0, \quad L_{T}=M_{T}^{-1}
$$

Advantage: L_{T} can be expressed in terms of resolvents.

$$
L_{T}=\frac{1}{2 i \pi} \int_{C} \tanh \frac{z}{2 T} \frac{1}{z-\mathfrak{h}_{x}} \frac{1}{z+\mathfrak{h}_{y}} d z=T \sum_{n \in \mathbb{Z}} \frac{1}{\mathfrak{h}_{x}-i \omega_{n}} \frac{1}{\mathfrak{h}_{y}+i \omega_{n}}
$$

with $\omega_{n}=\pi(2 n+1) T$.
Proof of (a) is implicitly given in [FHSS12], [FHSS14].
In (b) [FHL16] extension to $A=\mathbf{B} \wedge x$. Surprisingly hard.
Main problem: the first two components in $-i \nabla+\mathbf{B} \wedge x$ do not commute.
[FHSS14] R. L. Frank, C. Hainzl, R. Seiringer, J P Solovej, Commun. Math. Phys. 342 (2016), no. 1, 189-216
[FHSS12] R.L. Frank, C. Hainzl, R. Seiringer, J.P. Solovej, J. Amer. Math. Soc. 25, 667-713 (2012).

Strategy of proof of (b)

1. step: For minimizing $1-|V|^{1 / 2} L_{T}|V|^{1 / 2}$ we can reduce to states of the form

$$
\begin{gathered}
\varphi_{*}(x-y) \psi\left(\frac{x+y}{2}\right), \\
\left(1-|V|^{1 / 2} K_{T_{c}}^{-1}|V|^{1 / 2}\right) \varphi_{*}=0 \Leftrightarrow\left(K_{T_{c}}+V\right) \alpha_{*}=0, \varphi_{*}(x)=|V|^{1 / 2}(x) \alpha_{*}(x)
\end{gathered}
$$

2. step: Show

$$
\frac{1}{z-\mathfrak{h}_{B}}(x, y) \simeq e^{-i \frac{B}{2} \cdot x \wedge y} \frac{1}{z-\mathfrak{h}_{0}}(x-y)
$$

to evaluate

$$
\begin{aligned}
&\left\langle\varphi_{*} \psi\right| 1-|V|^{1 / 2} L_{T}|V|^{1 / 2}\left|\varphi_{*} \psi\right\rangle=\left\langle\varphi_{*}\right| 1-|V|^{1 / 2} K_{T}^{-1}|V|^{1 / 2}\left|\varphi_{*}\right\rangle\|\psi\|^{2} \\
&+\int F(Z)\langle\psi(X)| 1-\cos (Z \cdot(-i \nabla+\mathbf{B} \wedge X))|\psi(X)\rangle d Z= \\
&\left\langle\varphi_{*}\right||V|^{1 / 2}\left(K_{T_{c}}^{-1}-K_{T}^{-1}\right)|V|^{1 / 2}\left|\varphi_{*}\right\rangle\|\psi\|^{2}+\int F(Z)\langle\psi| 1-\cos (Z \cdot(-i \nabla+\mathbf{B} \wedge X))|\psi\rangle d Z \\
& \simeq \lambda_{2}\left(T-T_{c}\right)+\lambda_{0}\langle\psi|(-i \nabla+\mathbf{B} \wedge x)^{2}|\psi\rangle
\end{aligned}
$$

Hence

$$
\lambda_{2}\left(T-T_{c}\right)+\lambda_{0} 2 B \simeq 0
$$

and

$$
T=T_{c}(B) \simeq T_{c}-\frac{\lambda_{0}}{\lambda_{2}} 2 B
$$

The derivative

$$
\frac{d}{d B} T_{c}(0)=-\frac{\lambda_{0}}{\lambda_{2}} 2
$$

was calculated by Helfand, Werthamer [HW].
[HW] E. Helfand, N.R. Werthamer, Phys. Rev. 147, 288 (1966)

