Derivation of an effective evolution equation for a strongly coupled polaron

Rupert L. Frank
LMU Munich

Talk based on:
R.L.F., B. Schlein: Dynamics of a strongly coupled polaron.

Lett. Math. Phys. 104 (2014), no. 8, 911 - 929.
R.L.F., Z. Gang: Derivation of an effective evolution equation for a strongly coupled polaron. Preprint: arXiv:1505.03059

QMath13 Atlanta, October 8, 2016

The Polaron Model

Introduced by Fröhlich in 1937, as a model of an electron interacting with the quantized optical modes of a polar crystal. It is described by the Hamiltonian

$$
H=-\Delta+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{-i k \cdot x} a(k)+e^{i k \cdot x} a^{\dagger}(k)\right)+\int_{\mathbb{R}^{3}} d k a^{\dagger}(k) a(k)
$$

acting on $L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}$, with \mathcal{F} the bosonic Fock space on \mathbb{R}^{3}.
Although $|k|^{-1} e^{i k \cdot x} \notin L_{k}^{2}\left(\mathbb{R}^{3}\right)$, H can be defined as self-adjoint, lower bounded operator. We are interested in the large coupling (semi-classical) limit $\alpha \rightarrow \infty$.
Classical Hamiltonian on phase space $H^{1}\left(\mathbb{R}^{3}, \mathbb{C}\right) \oplus L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$,
$\mathcal{H}(\psi, \phi)=\int_{\mathbb{R}^{3}} d x|\nabla \psi(x)|^{2}+\sqrt{\alpha} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{d x d k|\psi(x)|^{2}}{|k|}\left(e^{-i k \cdot x} \phi(k)+e^{i k \cdot x} \overline{\phi(k)}\right)+\int_{\mathbb{R}^{3}} d k|\phi(k)|^{2}$
Question: Can one quantify the relation between H and \mathcal{H} as $\alpha \rightarrow \infty$?
Result about ground state energy (Donsker-Varadhan, 1983, Lieb-Thomas, 1997):

$$
\inf \operatorname{spec} H \sim \inf _{\|\psi\|=1, \phi} \mathcal{H}(\psi, \phi) \quad \text { as } \alpha \rightarrow \infty
$$

Dynamics

$$
\begin{gathered}
H=-\Delta+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{-i k \cdot x} a(k)+e^{i k \cdot x} a^{\dagger}(k)\right)+\int_{\mathbb{R}^{3}} d k a^{\dagger}(k) a(k) \\
\mathcal{H}(\psi, \phi)=\int_{\mathbb{R}^{3}} d x|\nabla \psi(x)|^{2}+\sqrt{\alpha} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{d x d k|\psi(x)|^{2}}{|k|}\left(e^{-i k \cdot x} \phi(k)+e^{i k \cdot x} \overline{\phi(k)}\right)+\int_{\mathbb{R}^{3}} d k|\phi(k)|^{2}
\end{gathered}
$$

Today: Compare dynamics generated by H and by \mathcal{H}.

$$
i \partial_{t} \Psi_{t}=H \Psi_{t}
$$

Landau-Pekar equations (1948) (phenomenologically derived)

$$
\begin{aligned}
i \partial_{t} \psi_{t} & =\left(-\Delta+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{i k \cdot x} \phi_{t}(k)+e^{-i k \cdot x} \overline{\phi_{t}(k)}\right)\right) \psi_{t} \\
i \partial_{t} \phi_{t} & =\phi_{t}+\frac{\sqrt{\alpha}}{|k|} \int_{\mathbb{R}^{3}} d x e^{i k \cdot x}\left|\psi_{t}(x)\right|^{2}
\end{aligned}
$$

Equivalent form of LP equations, usually in physics literature:

$$
i \partial_{t} \psi_{t}=\left(-\Delta+\sqrt{\alpha}|x|^{-1} * P_{t}\right) \psi_{t}, \quad \partial_{t}^{2} P_{t}=-P_{t}-\sqrt{\alpha}(2 \pi)^{2}\left|\psi_{t}\right|^{2}
$$

(Write $P+i Q=(2 \pi)^{-1} \int e^{-i k \cdot x}|k| \phi_{t}(k)$, so $\partial_{t} P_{t}=Q_{t}, \partial_{t} Q_{t}=-P_{t}-\sqrt{\alpha}(2 \pi)^{2}\left|\psi_{t}\right|^{2}$.)

Rescaling

How to choose initial conditions and time scale?
Rescale $x \mapsto \alpha^{-1} x, k \mapsto \alpha k$ and $a_{k} \mapsto \sqrt{\alpha} a_{\alpha k}=: b_{k}$, then $H \mapsto \alpha^{2} \tilde{H}$ with

$$
\tilde{H}=-\Delta+\int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{-i k \cdot x} b(k)+e^{i k \cdot x} b^{\dagger}(k)\right)+\int_{\mathbb{R}^{3}} d k b^{\dagger}(k) b(k)
$$

where

$$
\left[b(k), b^{\dagger}\left(k^{\prime}\right)\right]=\alpha^{-2} \delta\left(k-k^{\prime}\right), \quad\left[b(k), b\left(k^{\prime}\right)\right]=0, \quad\left[b^{\dagger}(k), b^{\dagger}\left(k^{\prime}\right)\right]=0
$$

We are dealing with a partially classical limit. (Ginibre, Nironi, Velo, 2006)
Consider coherent states $W(f) \Omega$ defined with Weyl operator $W(f)=e^{b^{\dagger}(f)-b(f)}$.

$$
\left\langle\psi \otimes W\left(\alpha^{2} \phi\right) \Omega\right| \tilde{H}\left|\psi \otimes W\left(\alpha^{2} \phi\right) \Omega\right\rangle=\tilde{\mathcal{H}}(\psi, \phi)
$$

$\tilde{\mathcal{H}}(\psi, \phi)=\int_{\mathbb{R}^{3}} d x|\nabla \psi(x)|^{2}+\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{d x d k|\psi(x)|^{2}}{|k|}\left(e^{-i k \cdot x} \phi(k)+e^{i k \cdot x} \overline{\phi(k)}\right)+\int_{\mathbb{R}^{3}} d k|\phi(k)|^{2}$
This yields immediately the upper bound $\inf \operatorname{spec} \tilde{H} \leq \inf \tilde{\mathcal{H}}$ on ground state energy.
Advantage: For ground state problem, all quantities are now order one.

RESCALING, CONT'D

How to choose initial conditions and time scale?

$$
\tilde{H}=-\Delta+\int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{-i k \cdot x} b(k)+e^{i k \cdot x} b^{\dagger}(k)\right)+\int_{\mathbb{R}^{3}} d k b^{\dagger}(k) b(k)
$$

where

$$
\left[b(k), b^{\dagger}\left(k^{\prime}\right)\right]=\alpha^{-2} \delta\left(k-k^{\prime}\right), \quad\left[b(k), b\left(k^{\prime}\right)\right]=0, \quad\left[b^{\dagger}(k), b^{\dagger}\left(k^{\prime}\right)\right]=0
$$

$\tilde{\mathcal{H}}(\psi, \phi)=\int_{\mathbb{R}^{3}} d x|\nabla \psi(x)|^{2}+\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{d x d k|\psi(x)|^{2}}{|k|}\left(e^{-i k \cdot x} \phi(k)+e^{i k \cdot x} \overline{\phi(k)}\right)+\int_{\mathbb{R}^{3}} d k|\phi(k)|^{2}$
This motivates to choose initial conditions of the form $\psi \otimes W\left(\alpha^{2} \phi\right) \Omega$ and to consider time scales α^{-2} for H (so times of order one for \tilde{H}).
Disadvantage: After rescaling (of x, k, a and t) the LP equations become

$$
\begin{aligned}
i \partial_{t} \psi_{t} & =\left(-\Delta+\int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{i k \cdot x} \phi_{t}(k)+e^{-i k \cdot x} \overline{\phi_{t}(k)}\right)\right) \psi_{t} \\
i \alpha^{2} \partial_{t} \phi_{t} & =\phi_{t}+\frac{1}{|k|} \int_{\mathbb{R}^{3}} d x e^{i k \cdot x}\left|\psi_{t}(x)\right|^{2}
\end{aligned}
$$

So there are two different time scales for the particle and the field.

An initial Result

Theorem 1 (F., Schlein, $2014+$ careful referee). If $\psi_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$, $\phi_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$, then

$$
\begin{gathered}
\left\|e^{-i t \tilde{H}} \psi_{0} \otimes W\left(\alpha^{2} \phi_{0}\right) \Omega-e^{-i t\left\|\phi_{0}\right\|^{2}} e^{-i t h_{\phi_{0}}} \psi_{0} \otimes W\left(\alpha^{2} \phi_{0}\right) \Omega\right\| \\
\leq C \min \left\{\left(e^{C|t| / \alpha}-1\right)^{1 / 2}, \alpha^{-1}\left(e^{C|t|}-1\right)^{1 / 2}\right\}
\end{gathered}
$$

with

$$
h_{\phi}=-\Delta+\int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{-i k \cdot x} \phi(k)+e^{i k \cdot x} \overline{\phi(k)}\right) \quad \text { in } L^{2}\left(\mathbb{R}^{3}\right)
$$

Remarks. (1) Non-trivial since ψ moves; disappointing since ϕ does not move. But not surprising in view of rescaled LP equations.
(2) Proof would be straightforward if $|k|^{-1}$ was in L^{2}, but it is not.
(3) Where to go from here? Either longer time scales or more precise asymptotics on same time scale. We choose second possibility, but first possibility would also be interesting.

Main result. EZ Version

Theorem 2 (F., Gang, 2015). If $\psi_{0} \in H^{4}\left(\mathbb{R}^{3}\right), \phi_{0} \in L^{2}\left(\mathbb{R}^{3},\left(1+k^{2}\right)^{3} d k\right)$, then for all $\alpha \geq 1$ and $|t| \leq \alpha$,

$$
\begin{aligned}
\left.\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)}\left|\gamma_{t}^{\text {particle }}-\right| \psi_{t}\right\rangle\left\langle\psi_{t}\right| \mid & \leq C \alpha^{-2}\left(1+t^{2}\right), \\
\left.\operatorname{tr}_{\mathcal{F}}\left|\gamma_{t}^{\text {field }}-\right| W\left(\alpha^{2} \phi_{t}\right) \Omega\right\rangle\left\langle W\left(\alpha^{2} \phi_{t}\right) \Omega\right| \mid & \leq C \alpha^{-2}\left(1+t^{2}\right) .
\end{aligned}
$$

where

$$
\gamma_{t}^{\text {particle }}:=\operatorname{tr}_{\mathcal{F}}\left|e^{-i \tilde{H} t} \psi_{0} \otimes W\left(\alpha^{2} \phi_{0}\right) \Omega\right\rangle\left\langle e^{-i \tilde{H} t} \psi_{0} \otimes W\left(\alpha^{2} \phi_{0}\right) \Omega\right|, \gamma_{t}^{\text {field }}:=\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)} \ldots
$$

Here $\left(\psi_{t}, \phi_{t}\right)$ satisfy the (rescaled) LP equations with initial conditions $\left(\psi_{0}, \phi_{0}\right)$.
Remarks. (1) Better approximation at the expense of more regularity of initial data and approximation only for reduced density matrices.
(2) Crucial that ϕ_{t} does move, see next slide.
(3) Maximal times $o(\alpha)$ are natural for our proof, but unclear whether also for the problem.
(4) Technical difficulties due to $|k|^{-1} \notin L^{2}\left(\mathbb{R}^{3}\right)$ become even more severe as one moves away from energy space.

AND YET IT MOVES...

Our main result says, in particular, that

$$
\left.\operatorname{tr}_{\mathcal{F}}\left|\gamma_{t}^{\text {field }}-\right| W\left(\alpha^{2} \phi_{t}\right) \Omega\right\rangle\left\langle W\left(\alpha^{2} \phi_{t}\right) \Omega\right| \mid \leq C \alpha^{-2}\left(1+t^{2}\right)
$$

This would not be true if ϕ_{0} would not move:
Lemma 3. If $\psi_{0} \in H^{4}\left(\mathbb{R}^{3}\right), \phi_{0} \in L^{2}\left(\mathbb{R}^{3},\left(1+k^{2}\right)^{3} d k\right)$ such that

$$
\phi_{0}(k)+\frac{1}{|k|} \int_{\mathbb{R}^{3}} d x e^{i k \cdot x}\left|\psi_{0}(x)\right|^{2} \not \equiv 0 .
$$

Then there are $\epsilon>0, C>0$ and $c>0$ such that for all $|t| \in\left[C \alpha^{-1}, \epsilon\right]$ and $\alpha \geq C / \epsilon$,

$$
\left.\operatorname{tr}_{\mathcal{F}}\left|\gamma_{t}^{\text {field }}-\right| W\left(\alpha^{2} \phi_{0}\right) \Omega\right\rangle\left\langle W\left(\alpha^{2} \phi_{0}\right) \Omega\right|\left|\geq c \alpha^{-1}\right| t \mid
$$

Main result. Full version

Theorem 4 (F., Gang, 2015). If $\psi_{0} \in H^{4}\left(\mathbb{R}^{3}\right), \phi_{0} \in L^{2}\left(\mathbb{R}^{3},\left(1+k^{2}\right)^{3} d k\right)$, then for all $\alpha \geq 1$ and $|t| \leq \alpha$,

$$
\left\|e^{-i t \tilde{H}} \psi_{0} \otimes W\left(\alpha^{2} \phi_{0}\right) \Omega-e^{-i \int_{0}^{t} d s \omega(s)} \psi_{t} \otimes W\left(\alpha^{2} \phi_{t}\right) \Omega-R(t)\right\| \leq C \alpha^{-2}|t|(1+|t|),
$$

where $\left(\psi_{t}, \phi_{t}\right)$ satisfy the (rescaled) LP equations with initial conditions $\left(\psi_{0}, \phi_{0}\right)$, $\omega(s)=\alpha^{2} \operatorname{Im}\left(\phi_{s}, \partial_{s} \phi_{s}\right)+\left\|\phi_{s}\right\|^{2}$ and

$$
\begin{aligned}
R(t)=-i W\left(\alpha^{2} \phi_{t}\right) \int_{0}^{t} & {\left[e^{-i H_{\phi_{t}}(t-s)-i \int_{0}^{s} \omega\left(s_{1}\right) d s_{1}}\right.} \\
& \left.\times P_{\psi_{s}}^{\perp} \int_{\mathbb{R}^{3}}\left(e^{i k \cdot x} W^{\dagger}\left(\alpha^{2} \phi_{t}\right) W\left(\alpha^{2} \phi_{s}\right) b_{k}^{\dagger} \psi_{s} \otimes \Omega\right) \frac{d k}{|k|}\right] d s
\end{aligned}
$$

Moreover,

$$
\left\|\left\langle\Omega, W^{*}\left(\alpha^{2} \phi_{t}\right) R(t)\right\rangle_{\mathcal{F}}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C \alpha^{-2} t^{2},\left\|\left\langle\psi_{t}, W^{*}\left(\alpha^{2} \phi_{t}\right) R(t)\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}\right\|_{\mathcal{F}} \leq C \alpha^{-2} t^{2}
$$

and

$$
\|R(t)\|_{L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}} \leq C \alpha^{-1}(1+|t|)
$$

Remarks on main result

$$
\left\|e^{-i t \tilde{H}} \psi_{0} \otimes W\left(\alpha^{2} \phi_{0}\right) \Omega-e^{-i \int_{0}^{t} d s \omega(s)} \psi_{t} \otimes W\left(\alpha^{2} \phi_{t}\right) \Omega-R(t)\right\| \leq C \alpha^{-2}|t|(1+|t|)
$$

Message: An approximation to $O\left(\alpha^{-2}\right)$ (for times of order one) is not possible by product states. One needs to include correlations which are of order α^{-1}. However, due to orthogonality conditions, they do not contribute to the reduced density matrices.
Full version of main result implies simplified version due to the following abstract lemma.
Lemma 5. Let $\Psi, \Phi \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and $f \in \mathcal{H}_{1}$ and $g \in \mathcal{H}_{2}$ such that

$$
\Psi=f \otimes g+\Phi
$$

and, for some $C>0$ and $\epsilon>0$,

$$
\|f\|_{\mathcal{H}_{1}} \leq C,\|g\|_{\mathcal{H}_{2}} \leq C,\|\Phi\|_{\mathcal{H}_{1} \otimes \mathcal{H}_{2}} \leq C \epsilon,\left\|\langle g, \Phi\rangle_{\mathcal{H}_{2}}\right\|_{\mathcal{H}_{1}} \leq C \epsilon^{2},\left\|\langle f, \Phi\rangle_{\mathcal{H}_{1}}\right\|_{\mathcal{H}_{2}} \leq C \epsilon^{2} .
$$

Then $\gamma_{1}=\operatorname{tr}_{\mathcal{H}_{2}}|\Psi\rangle\langle\Psi|$ and $\gamma_{2}=\operatorname{tr}_{\mathcal{H}_{1}}|\Psi\rangle\langle\Psi|$ satisfy

$$
\left.\operatorname{tr}_{\mathcal{H}_{1}}\left|\gamma_{1}-\|g\|_{\mathcal{H}_{2}}^{2}\right| f\right\rangle\langle f|\left|\leq 3 C^{2} \epsilon^{2}, \quad \operatorname{tr}_{\mathcal{H}_{2}}\right| \gamma_{2}-\|f\|_{\mathcal{H}_{1}}^{2}|g\rangle\left\langle g \| \leq 3 C^{2} \epsilon^{2}\right.
$$

Ingredients in the proof

- Second-order Duhamel expansion. Each term in the expansion has at least one b or b^{\dagger}, which is of size α^{-1} (when close to Ω). There are time integrals of length t, which leads to the restriction $|t|=o(\alpha)$.
- The statement ' b or b^{\dagger} is of size α^{-1} ' would be correct if $|k|^{-1}$ was in $L^{2}\left(\mathbb{R}^{3}\right)$. It is not and this leads to significant technical difficulties, in particular, in the second order Duhamel terms, since the operator domain of \tilde{H} is not explicit. Moreover, it is not clear whether the Lieb-Yamazaki-technique works even for first order terms.
- Study of the LP equations. $H^{4} \oplus L^{2}\left(\left(1+k^{2}\right)^{3}\right)$-regularity is preserved up to $O\left(\alpha^{2}\right)$.

THANK YOU FOR YOUR ATTENTION!

