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1. The Krein Laplacian and its perturba-
tions

Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with
boundary ∂Ω ∈ C∞. For s ∈ R, we denote by
Hs(Ω) and Hs(∂Ω) the Sobolev spaces on Ω
and ∂Ω respectively, and by Hs

0(Ω), s > 1/2,
the closure of C∞0 (Ω) in Hs(Ω).

Define the minimal Laplacian

∆min := ∆, Dom ∆min = H2
0(Ω).

Then ∆min is symmetric and closed but not
self-adjoint in L2(Ω) since

∆max := ∆∗min = ∆,

Dom ∆max =
{
u ∈ L2(Ω) |∆u ∈ L2(Ω)

}
.

We have

Ker ∆max = H(Ω) :=
{
u ∈ L2(Ω) |∆u = 0 in Ω

}
,

Dom ∆max = H(Ω) uH2
D(Ω)

where H2
D(Ω) := H2(Ω) ∩H1

0(Ω).
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Introduce the Krein Laplacian

K := −∆, DomK = H(Ω) uH2
0(Ω).

The operator K ≥ 0, self-adjoint in L2(Ω), is
the von Neumann-Krein “soft” extension of
−∆min, remarkable for its property that any
other self-adjoint extension S ≥ 0 of −∆min
satisfies

(S + I)−1 ≤ (K + I)−1.

We have KerK = H(Ω). Moreover, DomK
can be described in terms of the Dirichlet-
to-Neumann operator D. For f ∈ C∞(∂Ω),
set

D f =
∂u

∂ν |∂Ω
,

where ν is the outer normal unit vector at
∂Ω, u is the solution of the boundary-value
problem {

∆u = 0 in Ω,
u = f on ∂Ω.

Thus, D is a first-order elliptic ΨDO; hence,
it extends to a bounded operator form Hs(∂Ω)
into Hs−1(∂Ω), s ∈ R. In particular, D with
domain H1(∂Ω) is self-adjoint in L2(∂Ω).
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Then we have

DomK ={
u ∈ Dom ∆max

∣∣∣∣∣ ∂u∂ν |∂Ω
= D

(
u|∂Ω

)}
.

The Krein Laplacian K arises naturally in the

so called buckling problem:


∆2u = −λ∆u,

u|∂Ω = ∂u
∂ν |∂Ω = 0,

u ∈ Dom ∆max.
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Let L be the restriction of K onto DomK ∩
H(Ω)⊥ where H(Ω)⊥ := L2(Ω)	H(Ω). Then,

L is self-adjoint in H(Ω)⊥.

Proposition 1. The spectrum of L is purely

discrete and positive, and, hence, L−1 is com-

pact in H(Ω)⊥. As a consequence, σess(K) =

{0}, and the zero is an isolated eigenvalue of

K of infinite multiplicity.

Let V ∈ C(Ω;R). Then the operator K + V

with domain DomK is self-adjoint in L2(Ω).

In the sequel, we will investigate the spectral

properties of K + V .
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It should be underlined here that the pertur-

bations K + V are of different nature than

the perturbations KV discussed in the article

M. S. Ashbaugh, F. Gesztesy, M. Mitrea, G.

Teschl, Spectral theory for perturbed Krein

Laplacians in nonsmooth domains, Adv. Math.

223 (2010), 1372–1467, where the authors

assume that V ≥ 0, and set

KV,max := −∆+V, DomKV,max := Dom ∆max,

KV := −∆+V, DomKV := KerKV,maxuH
2
0(Ω).

Thus, if V 6= 0, then the operators KV and

K0 = K are self-adjoint on different domains,

while the operators K + V are all self-adjoint

on DomK. Moreover, for any 0 ≤ V ∈ C(Ω),

we have KV ≥ 0, σess(KV ) = {0}, and the

zero is an isolated eigenvalue of KV of infinite

multiplicity. As we will see, the properties of

K + V could be quite different.
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Theorem 1. Let V ∈ C(Ω;R). Then we have

σess(K + V ) = V (∂Ω).

In particular, σess(K +V ) = {0} if and only if

V|∂Ω = 0.

In the rest of the talk, we assume that 0 ≤
V ∈ C(Ω) with

V|∂Ω = 0, (1)

and will investigate the asymptotic distribu-

tion of the discrete spectrum of the operators

K ± V , adjoining the origin.

Set λ0 := inf σ(L),

N−(λ) := Tr 1(−∞,−λ)(K − V ), λ > 0,

N+(λ) := Tr 1(λ,λ0)(K + V ), λ ∈ (0, λ0).
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Let P : L2(Ω) → L2(Ω) be the orthogonal

projection onto H(Ω). Introduce the har-

monic Toeplitz operator

TV := PV : H(Ω)→H(Ω).

If V ∈ C(Ω), then TV is compact if and only

if (1) holds true.

Let T = T ∗ be a compact operator in a Hilbert

space. Set

n(s;T ) := Tr 1(s,∞)(T ), s > 0.

Thus, n(s;T ) is just the number of the eigen-

values of the operator T larger than s, counted

with their multiplicities.
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Theorem 2. Assume that 0 ≤ V ∈ C(Ω) and

V|∂Ω = 0. Then for any ε ∈ (0,1) we have

n(λ;TV ) ≤ N−(λ) ≤ n((1− ε)λ;TV ) +O(1),

and

n((1 + ε)λ;TV ) +O(1) ≤

N+(λ) ≤

n((1− ε)λ;TV ) +O(1),

as λ ↓ 0.

The proof of Theorem 2 is based on suitable

versions of the Birman–Schwinger principle.
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2. Spectral asymptotics of TV for V of

power-like decay at ∂Ω

Let a, τ ∈ C∞(Ω̄) satisfy a > 0 on Ω̄, τ >

0 on Ω, and τ(x) = dist(x, ∂Ω) for x in a

neighborhood of ∂Ω. Assume

V (x) = τ(x)γa(x), γ ≥ 0, x ∈ Ω. (2)

Set a0 := a|∂Ω.

Theorem 3. Assume that V satisfies (2) with

γ > 0. Then we have

n(λ;TV ) = C λ−
d−1
γ
(
1 +O(λ1/γ)

)
, λ ↓ 0,

(3)

where

C := ωd−1

(
Γ(γ + 1)1/γ

4π

)d−1 ∫
∂Ω

a0(y)
d−1
γ dS(y),

(4)

and ωn = πn/2/Γ(1 + n/2) is the volume of

the unit ball in Rn, n ≥ 1.
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Idea of the proof of Theorem 3:

Assume that f ∈ L2(∂Ω), s ∈ R. Then the

boundary-value problem{
∆u = 0 in Ω,
u = f on ∂Ω,

admits a unique solution u ∈ H1/2(Ω), and

the mapping f 7→ u defines an isomorphism

between L2(∂Ω) and H1/2(Ω). Set

u := Gf.

The operator G : L2(∂Ω) → L2(Ω) is com-

pact, and

KerG = {0}, RanG = H(Ω).

Set J := G∗G. Then the operator J = J∗ ≥
0 is compact in L2(∂Ω), and Ker J = {0}.
Hence, the operator J−1 is well defined as an

unbounded positive operator, self-adjoint in

L2(∂Ω).
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Let

G = U |G| = UJ1/2

be the polar decomposition of the operator
G, where U : L2(∂Ω) → L2(Ω) is an isomet-
ric operator with KerU = {0} and RanU =
H(Ω).

Proposition 2. The orthogonal projection P

onto H(Ω) satisfies

P = GJ−1G∗ = UU∗.

Assume that V satisfies (2) with γ ≥ 0, and
set JV := G∗V G.

Proposition 3. Let V satisfy (2) with γ > 0.
Then the operator TV is unitarily equivalent
to the operator J−1/2JV J

−1/2.

Proof. We have

PV P = UJ−1/2JV J
−1/2U∗,

and U maps unitarily L2(∂Ω) onto H(Ω).
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Proposition 4. Under the assumptions of Propo-

sition 3 the operator J−1/2JV J
−1/2 is a ΨDO

with principal symbol

2−γΓ(γ + 1)|η|−γa0(y), (y, η) ∈ T ∗∂Ω.

The proof of Proposition 4 is based on the

pseudo-differential calculus due to L. Boutet

de Monvel.

Further, under the assumptions of Theorem

3, we have Ker J−1/2JV J
−1/2 = {0}. Define

the operator

A :=
(
J−1/2JV J

−1/2
)−1/γ

.

Then A is a ΨDO with principal symbol

2Γ(γ + 1)−1/γ|η|a0(y)−1/γ, (y, η) ∈ T ∗∂Ω.
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By Proposition 3 and the spectral theorem,

we have

n(λ;TV ) = Tr 1(−∞,λ−1/γ
)(A), λ > 0. (5)

A classical result from L. Hörmander, The

spectral function of an elliptic operator, Acta

Math. 121 (1968), 193–218, implies that

Tr 1(−∞,E)(A) = CEd−1(1+O(E−1)), E →∞,
(6)

the constant C being defined in (4). Combin-

ing (5) and (6), we arrive at (3).
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3. Spectral asymptotics of TV for radially

symmetric compactly supported V

In this section we discuss the eigenvalue asymp-

totics of TV in the case where Ω is the unit

ball in Rd, d ≥ 2, while V is compactly sup-

ported in Ω, and possesses a partial radial

symmetry.

Set

Br :=
{
x ∈ Rd | |x| < r

}
, d ≥ 2, r ∈ (0,∞).

Proposition 5. Let Ω = B1. Assume that

0 ≤ V ∈ C(B1), and suppV = Bc for some

c ∈ (0,1). Suppose moreover that for any

δ ∈ (0, c) we have infx∈BδV (x) > 0. Then

lim
λ↓0
| lnλ|−d+1 n(λ;TV ) =

2−d+2

(d− 1)!| ln c|d−1
.
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The proof of Proposition 5 is based on the

following

Lemma 1. Let Ω = B1, V = b1Bc with some

b > 0 and c ∈ (0,1). Then we have

n(λ;TV ) = Mκ(λ), λ > 0,

where

Mk :=
(d+ k − 1

d− 1

)
+
(d+ k − 2

d− 1

)
, k ∈ Z+,

with

(m
n

)
=


m!

(m−n)!n! if m ≥ n,

0 if m < n,

and

κ(λ) := #
{
k ∈ Z+ | bc2k+d > λ

}
, λ > 0.
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Thank you!
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