Local Eigenvalue Asymptotics of the Perturbed Krein Laplacian

QMath13

Atlanta, Georgia, USA

October 9, 2016

Based on the preprint:
V. Bruneau, G. Raikov,

Spectral properties of harmonic Toeplitz operators and applications to the perturbed Krein Laplacian, arXiv:1609.08229.

1. The Krein Laplacian and its perturbations

Let $\Omega \subset \mathbb{R}^{d}, d \geq 2$, be a bounded domain with boundary $\partial \Omega \in C^{\infty}$. For $s \in \mathbb{R}$, we denote by $H^{s}(\Omega)$ and $H^{s}(\partial \Omega)$ the Sobolev spaces on Ω and $\partial \Omega$ respectively, and by $H_{0}^{s}(\Omega), s>1 / 2$, the closure of $C_{0}^{\infty}(\Omega)$ in $H^{s}(\Omega)$.

Define the minimal Laplacian

$$
\Delta_{\min }:=\Delta, \quad \text { Dom } \Delta_{\min }=H_{0}^{2}(\Omega)
$$

Then $\Delta_{\text {min }}$ is symmetric and closed but not self-adjoint in $L^{2}(\Omega)$ since

$$
\Delta_{\max }:=\Delta_{\min }^{*}=\Delta
$$

Dom $\Delta_{\max }=\left\{u \in L^{2}(\Omega) \mid \Delta u \in L^{2}(\Omega)\right\}$.
We have
Ker $\Delta_{\max }=\mathcal{H}(\Omega):=\left\{u \in L^{2}(\Omega) \mid \Delta u=0\right.$ in $\left.\Omega\right\}$,

$$
\operatorname{Dom} \Delta_{\max }=\mathcal{H}(\Omega) \dot{+} H_{D}^{2}(\Omega)
$$

where $H_{D}^{2}(\Omega):=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

Introduce the Krein Laplacian

$$
K:=-\Delta, \quad \operatorname{Dom} K=\mathcal{H}(\Omega) \dot{+} H_{0}^{2}(\Omega)
$$

The operator $K \geq 0$, self-adjoint in $L^{2}(\Omega)$, is the von Neumann-Krein "soft" extension of $-\Delta_{\text {min }}$, remarkable for its property that any other self-adjoint extension $S \geq 0$ of $-\Delta_{\text {min }}$ satisfies

$$
(S+I)^{-1} \leq(K+I)^{-1}
$$

We have Ker $K=\mathcal{H}(\Omega)$. Moreover, Dom K can be described in terms of the Dirichlet-to-Neumann operator \mathcal{D}. For $f \in C^{\infty}(\partial \Omega)$, set

$$
\mathcal{D} f=\frac{\partial u}{\partial \nu \mid \partial \Omega}
$$

where ν is the outer normal unit vector at $\partial \Omega, u$ is the solution of the boundary-value problem

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } \quad \Omega \\
u=f \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

Thus, \mathcal{D} is a first-order elliptic $\Psi \mathrm{DO}$; hence, it extends to a bounded operator form $H^{s}(\partial \Omega)$ into $H^{s-1}(\partial \Omega), s \in \mathbb{R}$. In particular, \mathcal{D} with domain $H^{1}(\partial \Omega)$ is self-adjoint in $L^{2}(\partial \Omega)$.

Then we have
$\operatorname{Dom} K=$

$$
\left\{u \in \operatorname{Dom} \Delta_{\max } \left\lvert\, \frac{\partial u}{\partial \nu \mid \partial \Omega}=\mathcal{D}\left(u_{\mid \partial \Omega}\right)\right.\right\}
$$

The Krein Laplacian K arises naturally in the so called buckling problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u=-\lambda \Delta u \\
\left.u_{\mid \partial \Omega}=\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega=0 \\
u \in \operatorname{Dom} \Delta_{\max }
\end{array}\right.
$$

Let L be the restriction of K onto Dom $K \cap$ $\mathcal{H}(\Omega)^{\perp}$ where $\mathcal{H}(\Omega)^{\perp}:=L^{2}(\Omega) \ominus \mathcal{H}(\Omega)$. Then, L is self-adjoint in $\mathcal{H}(\Omega)^{\perp}$.

Proposition 1. The spectrum of L is purely discrete and positive, and, hence, L^{-1} is compact in $\mathcal{H}(\Omega)^{\perp}$. As a consequence, $\sigma_{\mathrm{ess}}(K)=$ $\{0\}$, and the zero is an isolated eigenvalue of K of infinite multiplicity.

Let $V \in C(\bar{\Omega} ; \mathbb{R})$. Then the operator $K+V$ with domain Dom K is self-adjoint in $L^{2}(\Omega)$. In the sequel, we will investigate the spectral properties of $K+V$.

It should be underlined here that the perturbations $K+V$ are of different nature than the perturbations K_{V} discussed in the article M. S. Ashbaugh, F. Gesztesy, M. Mitrea, G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223 (2010), 1372-1467, where the authors assume that $V \geq 0$, and set
$K_{V, \text { max }}:=-\Delta+V$, Dom $K_{V, \text { max }}:=$ Dom $\Delta_{\max }$, $K_{V}:=-\Delta+V$, Dom $K_{V}:=\operatorname{Ker} K_{V, \max } \dot{+} H_{0}^{2}(\Omega)$.
Thus, if $V \neq 0$, then the operators K_{V} and $K_{0}=K$ are self-adjoint on different domains, while the operators $K+V$ are all self-adjoint on Dom K. Moreover, for any $0 \leq V \in C(\bar{\Omega})$, we have $K_{V} \geq 0, \sigma_{\text {ess }}\left(K_{V}\right)=\{0\}$, and the zero is an isolated eigenvalue of K_{V} of infinite multiplicity. As we will see, the properties of $K+V$ could be quite different.

Theorem 1. Let $V \in C(\bar{\Omega} ; \mathbb{R})$. Then we have

$$
\sigma_{\mathrm{ess}}(K+V)=V(\partial \Omega)
$$

In particular, $\sigma_{\mathrm{ess}}(K+V)=\{0\}$ if and only if $V_{\mid \partial \Omega}=0$.

In the rest of the talk, we assume that $0 \leq$ $V \in C(\bar{\Omega})$ with

$$
\begin{equation*}
V_{\mid \partial \Omega}=0 \tag{1}
\end{equation*}
$$

and will investigate the asymptotic distribution of the discrete spectrum of the operators $K \pm V$, adjoining the origin.

Set $\lambda_{0}:=\inf \sigma(L)$,

$$
\begin{gathered}
\mathcal{N}_{-}(\lambda):=\operatorname{Tr} \mathbb{1}_{(-\infty,-\lambda)}(K-V), \lambda>0 \\
\mathcal{N}_{+}(\lambda):=\operatorname{Tr} \mathbb{1}_{\left(\lambda, \lambda_{0}\right)}(K+V), \lambda \in\left(0, \lambda_{0}\right)
\end{gathered}
$$

Let $P: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ be the orthogonal projection onto $\mathcal{H}(\Omega)$. Introduce the harmonic Toeplitz operator

$$
T_{V}:=P V: \mathcal{H}(\Omega) \rightarrow \mathcal{H}(\Omega)
$$

If $V \in C(\bar{\Omega})$, then T_{V} is compact if and only if (1) holds true.

Let $T=T^{*}$ be a compact operator in a Hilbert space. Set

$$
n(s ; T):=\operatorname{Tr} \mathbb{1}_{(s, \infty)}(T), \quad s>0
$$

Thus, $n(s ; T)$ is just the number of the eigenvalues of the operator T larger than s, counted with their multiplicities.

Theorem 2. Assume that $0 \leq V \in C(\bar{\Omega})$ and $V_{\partial \Omega}=0$. Then for any $\varepsilon \in(0,1)$ we have $n\left(\lambda ; T_{V}\right) \leq \mathcal{N}_{-}(\lambda) \leq n\left((1-\varepsilon) \lambda ; T_{V}\right)+O(1)$, and

$$
\begin{gathered}
n\left((1+\varepsilon) \lambda ; T_{V}\right)+O(1) \leq \\
\mathcal{N}_{+}(\lambda) \leq \\
n\left((1-\varepsilon) \lambda ; T_{V}\right)+O(1),
\end{gathered}
$$

as $\lambda \downarrow 0$.

The proof of Theorem 2 is based on suitable versions of the Birman-Schwinger principle.
2. Spectral asymptotics of T_{V} for V of power-like decay at $\partial \Omega$

Let $a, \tau \in C^{\infty}(\bar{\Omega})$ satisfy $a>0$ on $\bar{\Omega}, \tau>$ 0 on Ω, and $\tau(x)=\operatorname{dist}(x, \partial \Omega)$ for x in a neighborhood of $\partial \Omega$. Assume

$$
\begin{equation*}
V(x)=\tau(x)^{\gamma} a(x), \quad \gamma \geq 0, \quad x \in \Omega . \tag{2}
\end{equation*}
$$

Set $a_{0}:=a_{\mid \partial \Omega}$.
Theorem 3. Assume that V satisfies (2) with $\gamma>0$. Then we have

$$
\begin{equation*}
n\left(\lambda ; T_{V}\right)=\mathcal{C} \lambda^{-\frac{d-1}{\gamma}}\left(1+O\left(\lambda^{1 / \gamma}\right)\right), \quad \lambda \downarrow 0, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{C}:=\omega_{d-1}\left(\frac{\Gamma(\gamma+1)^{1 / \gamma}}{4 \pi}\right)^{d-1} \int_{\partial \Omega} a_{0}(y)^{\frac{d-1}{\gamma}} d S(y) \tag{4}
\end{equation*}
$$

and $\omega_{n}=\pi^{n / 2} / \Gamma(1+n / 2)$ is the volume of the unit ball in $\mathbb{R}^{n}, n \geq 1$.

Idea of the proof of Theorem 3:

Assume that $f \in L^{2}(\partial \Omega), s \in \mathbb{R}$. Then the boundary-value problem

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } \quad \Omega, \\
u=f \quad \text { on } \quad \partial \Omega,
\end{array}\right.
$$

admits a unique solution $u \in H^{1 / 2}(\Omega)$, and the mapping $f \mapsto u$ defines an isomorphism between $L^{2}(\partial \Omega)$ and $H^{1 / 2}(\Omega)$. Set

$$
u:=G f .
$$

The operator $G: L^{2}(\partial \Omega) \rightarrow L^{2}(\Omega)$ is compact, and

$$
\operatorname{Ker} G=\{0\}, \quad \overline{\operatorname{Ran} G}=\mathcal{H}(\Omega)
$$

Set $J:=G^{*} G$. Then the operator $J=J^{*} \geq$ 0 is compact in $L^{2}(\partial \Omega)$, and $\operatorname{Ker} J=\{0\}$. Hence, the operator J^{-1} is well defined as an unbounded positive operator, self-adjoint in $L^{2}(\partial \Omega)$.

Let

$$
G=U|G|=U J^{1 / 2}
$$

be the polar decomposition of the operator G, where $U: L^{2}(\partial \Omega) \rightarrow L^{2}(\Omega)$ is an isometric operator with $\operatorname{Ker} U=\{0\}$ and $\operatorname{Ran} U=$ $\mathcal{H}(\Omega)$.

Proposition 2. The orthogonal projection P onto $\mathcal{H}(\Omega)$ satisfies

$$
P=G J^{-1} G^{*}=U U^{*}
$$

Assume that V satisfies (2) with $\gamma \geq 0$, and set $J_{V}:=G^{*} V G$.

Proposition 3. Let V satisfy (2) with $\gamma>0$. Then the operator T_{V} is unitarily equivalent to the operator $J^{-1 / 2} J_{V} J^{-1 / 2}$.

Proof. We have

$$
P V P=U J^{-1 / 2} J_{V} J^{-1 / 2} U^{*}
$$

and U maps unitarily $L^{2}(\partial \Omega)$ onto $\mathcal{H}(\Omega)$. \square

Proposition 4. Under the assumptions of Proposition 3 the operator $J^{-1 / 2} J_{V} J^{-1 / 2}$ is a $\Psi \mathrm{DO}$ with principal symbol

$$
2^{-\gamma} \Gamma(\gamma+1)|\eta|^{-\gamma} a_{0}(y), \quad(y, \eta) \in T^{*} \partial \Omega
$$

The proof of Proposition 4 is based on the pseudo-differential calculus due to L. Boutet de Monvel.

Further, under the assumptions of Theorem 3, we have Ker $J^{-1 / 2} J_{V} J^{-1 / 2}=\{0\}$. Define the operator

$$
A:=\left(J^{-1 / 2} J_{V} J^{-1 / 2}\right)^{-1 / \gamma}
$$

Then A is a $\Psi D O$ with principal symbol

$$
2 \Gamma(\gamma+1)^{-1 / \gamma}|\eta| a_{0}(y)^{-1 / \gamma}, \quad(y, \eta) \in T^{*} \partial \Omega
$$

By Proposition 3 and the spectral theorem, we have

$$
\begin{equation*}
n\left(\lambda ; T_{V}\right)=\operatorname{Tr} \mathbb{1}_{\left(-\infty, \lambda^{-1 / \gamma}\right)}(A), \quad \lambda>0 \tag{5}
\end{equation*}
$$

A classical result from L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218, implies that $\operatorname{Tr} \mathbb{1}_{(-\infty, E)}(A)=\mathcal{C} E^{d-1}\left(1+O\left(E^{-1}\right)\right), E \rightarrow \infty$,
the constant \mathcal{C} being defined in (4). Combining (5) and (6), we arrive at (3).

3. Spectral asymptotics of T_{V} for radially symmetric compactly supported V

In this section we discuss the eigenvalue asymptotics of T_{V} in the case where Ω is the unit ball in $\mathbb{R}^{d}, d \geq 2$, while V is compactly supported in Ω, and possesses a partial radial symmetry.

Set

$$
B_{r}:=\left\{x \in \mathbb{R}^{d}| | x \mid<r\right\}, \quad d \geq 2, \quad r \in(0, \infty) .
$$

Proposition 5. Let $\Omega=B_{1}$. Assume that $0 \leq V \in C\left(\overline{B_{1}}\right)$, and supp $V=\overline{B_{c}}$ for some $c \in(0,1)$. Suppose moreover that for any $\delta \in(0, c)$ we have $\inf _{x \in B_{\delta}} V(x)>0$. Then

$$
\lim _{\lambda \downarrow 0}|\ln \lambda|^{-d+1} n\left(\lambda ; T_{V}\right)=\frac{2^{-d+2}}{(d-1)!|\ln c|^{d-1}} .
$$

The proof of Proposition 5 is based on the following

Lemma 1. Let $\Omega=B_{1}, V=b \mathbb{1}_{B_{c}}$ with some $b>0$ and $c \in(0,1)$. Then we have

$$
n\left(\lambda ; T_{V}\right)=M_{\kappa(\lambda)}, \quad \lambda>0,
$$

where

$$
M_{k}:=\binom{d+k-1}{d-1}+\binom{d+k-2}{d-1}, \quad k \in \mathbb{Z}_{+},
$$

with

$$
\binom{m}{n}=\left\{\begin{array}{l}
\frac{m!}{(m-n)!n!} \text { if } \quad m \geq n, \\
0 \text { if } m<n,
\end{array}\right.
$$

and

$$
\kappa(\lambda):=\#\left\{k \in \mathbb{Z}_{+} \mid b c^{2 k+d}>\lambda\right\}, \quad \lambda>0 .
$$

Thank you!

