Essential Spectrum of Schrödinger Operators with no Periodic Potentials on Periodic Metric Graphs

Vladimir Rabinovich (Instituto Politécnico Nacional, Mexico)

Q-Math 13, Atlanta, October, 8-11, 2016

The main aim of the talk is the investigation of the essential spectrum of the quantum graphs. For this aim we use *the limit operators method (see for instance the book)*

 V.S.Rabinovich, S. Roch, B.Silbermann, Limit Operators and its Applications in the Operator Theory, In ser. Operator Theory: Advances and Applications, vol 150, ISBN 3-7643-7081-5, Birkhäuser Velag, 2004, 392 pp.

Earlier this method was successfully applied to the study of the essential spectrum of electromagnetic Schrödinger and Dirac operators on \mathbb{R}^n for wide classes of potentials. In particular, a very simple and transparent proof of the Hunziker-van Winter-Zhislin Theorem (HWZ-Theorem) for multi-particle Hamiltonians has been obtained.

• V. Rabinovich, Essential spectrum of perturbed pseudodifferential operators. Applications to the Schrödinger, Klein-Gordon, and Dirac operators, Russian Journal of Math. Physics, Vol.12, No.1, 2005, p. 62-80

The limit operators method also was applied to the study of the location of the essential spectrum of discrete Schrödinger and Dirac operators on \mathbb{Z}^n , and on periodic combinatorial graphs.

- V.S. Rabinovich, S. Roch, The essential spectrum of Schrödinger operators on lattice, Journal of Physics A, Math. Theor. 39 (2006) 8377-8394
- V.S. Rabinovich, S. Roch, Essential spectra of difference operators on Zⁿ-periodic graphs, J. of Physics A: Math. Theor. ISSN 1751-8113, 40 (2007) 10109–10128

We consider a periodic metric graph Γ embedded in \mathbb{R}^n . We suppose that a graph Γ consists of a countably infinite set of vertices $\mathcal{V} = \{v_i\}_{i \in \mathcal{I}}$ and a set $\mathcal{E} = \{e_j\}_{j \in \mathcal{J}}$ of edges connecting these vertices. Each edge e is a line segment

$$[\alpha,\beta] = \left\{ x \in \mathbb{R}^2 : x = (1-\theta)\alpha + \theta\beta, \theta \in [0,1] \right\} \subset \mathbb{R}^2$$

connecting its endpoints (vertices α, β), and we suppose that for the every pair of vertices $\{\alpha, \beta\}$ there exists not more than one edge connecting this pair. Let \mathcal{E}_v be a set of edges incident to the vertex v (i.e., containing v). We will always assume that the degree (valence) d(v) (the number of points of \mathcal{E}_v) of any vertex v is finite and positive. Vertices with no incident edges are not allowed.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

For each edge $e = [\alpha, \beta]$ we assign its length $I_e = \|\alpha - \beta\|_{\mathbb{R}^n} < \infty$. We also suppose that the graph Γ is a connected set. The graph is a metric space with a metric induced by the standard metric of \mathbb{R}^n . The topology on Γ is induced also by the topology on \mathbb{R}^n , and the measure dI on Γ is the line Lebesgue measure on every edge.

We suppose that on the graph $\Gamma \subset \mathbb{R}^n$ acts a group \mathbb{G} isomorphic to \mathbb{Z}^m , $1 \leq m \leq n$, that is

$$\mathbb{G} = \left\{ g \in \mathbb{R}^n : g = \sum_{j=1}^m \alpha_j \mathfrak{e}_j, \alpha_j \in \mathbb{Z}, \mathfrak{e}_j \in \mathbb{R}^n \right\}$$

where the system $\{e_1, ..., e_m\}$ is linear independent. The group G acts on Γ by the shifts

$$\mathbb{G} \times \Gamma \ni (g, x) \rightarrow g + x \in \Gamma$$
,

where g + x is the sum of the vectors in \mathbb{R}^n . We suppose that the group \mathbb{G} acts *freely* on X, that is if g + x = x for some $x \in \Gamma$, then g = 0. Moreover we suppose that the action of \mathbb{G} on Γ is co-compact, that is the fundamental domain $\Gamma_0 = \Gamma/\mathbb{G}$ of Γ with respect to the action of \mathbb{G} on Γ is a compact set in the corresponding quotient topology. Let $G_0 \subset \Gamma$ be a measurable set with the compact closure which contains for every $x \in \Gamma$ exactly one element of the quotient class $x + \mathbb{G} \in \Gamma/\mathbb{G}$. There exists a natural one-to-one mapping $G_0 \to \Gamma/\mathbb{G}$ which is the composition of the inclusion mapping $G_0 \subset \Gamma$ and the canonical projection $\Gamma \to \Gamma/\mathbb{G}$. Let $G_h = G_0 + h$, $h \in \mathbb{G}$. Then

$$G_{h_1}\cap G_{h_2}= arnothing$$
 if $h_1
eq h_2$,

and

$$\bigcup_{h\in\mathbb{G}}G_h=\Gamma.$$

We say that the graph Γ is *periodic with respect to* \mathbb{G} if the above given conditions are satisfied.

通 ト イヨ ト イヨト

We denote by $L^2(\Gamma)$ the space of measurable functions on Γ with the norm

$$||u||_{L^{2}(\Gamma)} = \left(\int_{\Gamma} |u(x)|^{2} dx\right)^{1/2} = \left(\sum_{e \in \mathcal{E}} \int_{e} |u(x)|^{2} dx\right)^{1/2}$$

and the scalar product

$$\langle u, v \rangle = \sum_{e \in \mathcal{E}} \int_e u(x) \bar{v}(x) dx.$$

< 注入 < 注入

Let $\Gamma \subset \mathbb{R}^n$ be a periodic with respect to \mathbb{G} metric graph. We denote by $H^s(e), e \in \mathcal{E}, s \in \mathbb{R}$ the Sobolev space on the edge e, and let

$$H^{s}(\Gamma) = \bigoplus_{e \in \mathcal{E}} H^{s}(e)$$

with the norm

$$\|u\|_{H^{s}(\Gamma)} = \left(\sum_{e \in \mathcal{E}} \|u_{e}\|_{H^{s}(e)}^{2}\right)^{1/2}$$

We denote \mathcal{E}_{ν} the set of edges incident ν , and let $d(\nu) \in \mathbb{N}$ be a number of the edges in \mathcal{E}_{ν} (The periodicity of the graph Γ implies that $d(\nu + g) = d(\nu)$ for every $\nu \in \mathcal{V}$ and $g \in \mathbb{G}$).

We consider the Schrödinger operator on Γ

$$Hu(x) = -\frac{d^2u(x)}{dx^2} + q(x)u(x), x \in \Gamma \setminus \mathcal{V},$$
(1)

where $q \in L^{\infty}(\Gamma)$. We provide the operator H by the Kirchhoff-Neumann conditions at the every vertex $v \in \mathcal{V}$.

$$u_e(v) = u_{e'}(v)$$
, if $e, e' \in \mathcal{E}_v$, and $\sum_{e \in \mathcal{E}_v} u'_e = 0$ (2)

where the orientations of the edges $e \in \mathcal{E}_{v}$ are taken as outgoing from v.

By the usual way we obtain that

$$\operatorname{Re} \langle Hu, u \rangle \geq m_q \| u \|_{L^2(\Gamma)}^2, u \in \tilde{H}^2(\Gamma), m_q = \inf_{x \in \Gamma} \operatorname{Re} q(x).$$
(3)

This property implies that the operator H provided by the Kirchhoff-Neumann conditions (2) defines an unbounded closed operator \mathcal{H} in $L^2(\Gamma)$ with the domain $\tilde{H}^2(\Gamma)$, and \mathcal{H} is a selfadjoint operator if the potential q is a real-valued function.

We recall that a closed unbounded operator A acting in the Hilbert space X with dense domain D_A is called a Fredholm operator if ker A is a finite dimensional sub-space of X, Im A is closed in X, and X / Im A is a finite-dimensional space. We introduce in $X_1 = D_A$ the norm of the graphics

$$\|u\|_{D_A} = \left(\|u\|_X^2 + \|Au\|_X^2\right)^{1/2}.$$
 (4)

Since A is closed, X_1 is a Banach space. Then A is a Fredholm operator as unbounded operator in X if and only if $A : X_1 \to X$ is a Fredholm operator as a bounded operator.

Note that the norm in $ilde{H}^2(\Gamma)$ equivalents to the graphic norm in $D_{\mathcal{H}}$

$$\|u\|_{D_{\mathcal{H}}} = \left(\|u\|_{L^{2}(\Gamma)}^{2} + \|Hu\|_{L^{2}(\Gamma)}^{2}\right)^{1/2}$$

since the potential $q \in L^{\infty}(\Gamma)$. Hence the Fredholmness of the operator \mathcal{H} as an unbounded operator in $L^2(\Gamma)$ with domain $\tilde{H}^2(\Gamma)$ is equivalent to the Fredholmness of \mathcal{H} as a bounded operator from $\tilde{H}^2(\Gamma)$ into $L^2(\Gamma)$. We recall that the essential spectrum $sp_{ess}\mathcal{H}$ of \mathcal{H} is the set of all $\lambda \in \mathbb{C}$ such that the operator $\mathcal{H} - \lambda I$ is not Fredholm operator as unbounded in $L^2(\Gamma)$ with domain $\tilde{H}^2(\Gamma)$. Note that for a self-adjoint operator \mathcal{H}

$$sp_{dis}\mathcal{H} = sp\mathcal{H} \setminus sp_{ess}\mathcal{H}.$$

Let $h \in \mathbb{G}$. Then the shift (translation) operators

$$V_h u(x) = u(x-h)$$
 , $x \in \Gamma$, $h \in \mathbb{G}$

are isometric operators in $L^2(\Gamma)$ and $H^2(\Gamma)$. Moreover if $u \in H^2(\Gamma)$ satisfies the Kirchhoff-Neumann conditions at the every vertex $v \in \mathcal{V}$ the function $V_h u$ also satisfies these conditions for every $v \in \mathcal{V}$. Hence V_h is an isometric operator in $\tilde{H}^2(\Gamma)$. Let $\mathbb{G} \ni h_k \to \infty$. We consider the family of operators

$$V_{-h_k}\mathcal{H}V_{h_k}:\tilde{H}^2(\Gamma)\to L^2(\Gamma)$$

defined by the Schrödinger operators

$$V_{-h_k}HV_{h_k}u(x) = \left(-rac{d^2u(x)}{dx^2} + q(x+h_k)
ight)u(x), x \in \Gamma \setminus \mathcal{V}.$$

We say that the potential $q \in L^{\infty}(\Gamma)$ is rich, if for every sequence $\mathbb{G} \ni h_k \to \infty$ there exists a subsequence $\mathbb{G} \ni g_k \to \infty$ and a limit function $q^{g} \in L^{\infty}(\Gamma)$ such that

$$\lim_{k \to \infty} \sup_{x \in \mathcal{K} \subset \Gamma} |q(x + g_k) - q^g(x)| = 0$$
(5)

for every compact set $K \subset \Gamma$.

Example

Let $q \in C_{b,u}(\Gamma)$ the space of bounded uniformly continuous functions on Γ . If $q \in C_{b,u}(\Gamma)$ the sequence $\{q(x + h_k), x \in \Gamma, h_k \in \mathbb{G}\}$ is uniformly bounded and equicontinuous. Then by Arzela-Ascoli Theorem there exists a subsequence $\{q(x + g_k), x \in \Gamma, g_k \in \mathbb{G}\}$ such that (5) holds.

Essential spectrum of Schrödinger operators on periodic graphs and limit operators

Let $q \in L^{\infty}(\Gamma)$ be a potential and a sequence $\mathbb{G} \ni g_k \to \infty$ is such

$$\lim_{k \to \infty} \sup_{x \in \mathcal{K} \subset \Gamma} |q(x + g_k) - q^g(x)| = 0$$
(6)

for every compact set $K \subset \Gamma$ and a function $q^g \in L^{\infty}(\Gamma)$. Then the unbounded in $L^2(\Gamma)$ operator \mathcal{H}^g with domain $\tilde{H}^2(\Gamma)$ generated by the Schrödinger operator

$$H^{g}u(x) = -rac{d^{2}u(x)}{dx^{2}} + q^{g}(x)u(x), x \in \Gamma \setminus \mathcal{V}$$

is called the limit operator of \mathcal{H} defined by the sequence $\mathbb{G} \ni g_k \to \infty$. We denote by $Lim(\mathcal{H})$ the set of all limit operators of the the operator \mathcal{H} . The main result of the talk is:

Theorem

Let Γ be a periodic with respect to the group \mathbb{G} metric graph and \mathcal{H}_q be a Schrödinger operator in $L^2(\Gamma)$ with domain $\tilde{H}^2(\Gamma)$ with a rich potential $q \in L^{\infty}(\Gamma)$. Then $\operatorname{sp} \mathcal{H} = -$

$$\mathfrak{sp}_{ess}\mathcal{H}_q = \bigcup_{\mathcal{H}_q^g \in Lim(\mathcal{H}_q)} \mathfrak{sp}\mathcal{H}_q^g.$$

Periodic potentials

Let Γ be a graph periodic with respect to the action of the group G

$$\mathbb{G}=\left\{g\in\mathbb{R}^n:g=\sum_{j=1}^mlpha_j\mathfrak{e}_j,lpha_j\in\mathbb{Z}, \mathfrak{e}_j\in\mathbb{R}^n
ight\}$$
 ,

provided by the Schrödinger operator

$$H_{q}u(x) = -\frac{d^{2}u(x)}{dx^{2}} + q(x)u(x), x \in \Gamma \setminus \mathcal{V},$$
(7)

with the potential $q\in L^\infty(\Gamma)$ periodic with respect to the action of the group $\mathbb G$

$$q(x+g) = q(x), x \in \Gamma, g \in \mathbb{G}.$$

Since \mathcal{H}_q is invariant with respect to shifts all limit operators \mathcal{H}_q^h coincide with \mathcal{H}_q . Hence by Theorem 2

$$sp_{ess}\mathcal{H}_q=sp\mathcal{H}_q$$
 ,

and the periodic operator does not have the discrete spectrum.

(Institute)

Let the potential $q \in L^{\infty}(\Gamma)$ be a periodic with respect to \mathbb{G} real-valued function. Then \mathcal{H}_q with domain $\tilde{\mathcal{H}}^2(\Gamma)$ is a self-adjoint operator in $L^2(\Gamma)$ with the spectrum which has a band structure

$$sp\mathcal{H}_{q}=sp_{ess}\mathcal{H}_{q}=igcup_{j=1}^{\infty}\left[lpha_{j},eta_{j}
ight].$$

Let

$$q=q_0+q_1,$$

where $q_0 \in L^{\infty}(\Gamma)$ is a periodic real-valued function, and $q_1 \in L^{\infty}(\Gamma)$ is a real valued functions such that

$$\lim_{\Gamma\ni x\to\infty}q_1(x)=0.$$

Then

$$\mathcal{H}^g_q = \mathcal{H}_{q_0}$$

and hence

$${\it sp}_{\it ess}{\cal H}^{
m g}_q={\it sp}{\cal H}_{q_0}.$$

Hence only the discrete spectrum can be arise in the gaps of the spectrum of the periodic operator \mathcal{H}_{q_0} under such sort impurities (pertrubations).

We say that a function $a \in C_b(\Gamma)$ is slowly oscillating at infinity and belongs to the class $SO(\Gamma)$ if for every sequence $\mathbb{G} \ni g^m \to \infty$

$$\lim_{m \to \infty} \sup_{\{x_1, x_2 \in \Gamma: |x_1 - x_2| \le 1\}} |a(x_1 + g_m) - a(x_2 + g_m)| = 0.$$
(8)

One can prove that $SO(\Gamma) \subset C_{b,u}(\Gamma)$.

Example

Let $f \in C_b^1(\mathbb{R})$, $a(x) = f((1+|x|)^{\alpha})$, $0 < \alpha < 1$, $x \in \mathbb{R}^n$. Then $a \mid_{\Gamma} \in SO(\Gamma)$.

Let $a \in SO(\Gamma)$. Then every sequence $\mathbb{G} \ni h_m \to \infty$ has a subsequence $g_m \in \mathbb{G}$ such that for every $x \in \Gamma$ there exists a limit

$$a^g = \lim_m a(x+g_m),$$

and a^g independent of x.

通 ト イヨ ト イヨト

We consider potentials of the form

$$q=q_0+q_1,$$

where $q_0 \in L^{\infty}(\Gamma)$ is a periodic real-valued function, and q_1 is a real-valued function of the class $SO(\Gamma)$. Then the potential q is rich, and all limit operators are of the form

$$\mathcal{H}^{ extsf{g}}_{ extsf{q}} = \mathcal{H}_{ extsf{q}_0 + extsf{q}_1}$$

where $q_1^g = \lim_{m \to \infty} q(x + g_m)$ and $q_1^g \in \mathbb{R}$ are independent of $x \in \Gamma$.

Then

$$sp\mathcal{H}_q^g = igcup_{j=1}^\infty \left[lpha_j + q_1^g, eta_j + q_1^g
ight].$$

Let

$$m_{q_1}^{\infty} = \liminf_{G \ni g \to \infty} q_1(x+g), M_{q_1}^{\infty} = \limsup_{G \ni g \to \infty} q_1(x+g), x \in \Gamma,$$

where m_{q_1} , M_{q_1} are independent of the choice of $x \in \Gamma$.

2

Let m > 1. Then the set of the partial limits of the function $\mathbb{G} \in g \to q_1(x+g) \in \mathbb{R}$ is a segment $\left[m_{q_1}^{\infty}, M_{q_1}^{\infty}\right]$. Applying formula

$$sp_{ess}\mathcal{H}_q = igcup_{\mathcal{H}_q^g \in Lim(\mathcal{H}_q)} sp\mathcal{H}_q^g$$

we obtain that

$$sp_{ess}\mathcal{H}_q = igcup_{j=1}^\infty \left[lpha_j + m_{q_1}^\infty, eta_j + M_{q_1}^\infty
ight].$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

In the case n=1 the set of the partial limits has two components $\left[m_{q_1}^{\pm\infty},\,M_{q_1}^{\pm\infty}\right]$ and we obtain that

$$sp_{ess}\mathcal{H}_q = \bigcup_{j=1}^{\infty} \left[\alpha_j + m_{q_1}^{+\infty}, \beta_j + M_{q_1}^{+\infty} \right] \cup \left[\alpha_j + m_{q_1}^{-\infty}, \beta_j + M_{q_1}^{-\infty} \right].$$

æ

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

We consider the gaps in the essential spectrum of \mathcal{H}_q

$$(eta_{j}+M_{q_{1}}^{\infty},lpha_{j+1}+m_{q_{1}}^{\infty}), j=1,...,..$$

Let

$$osc_{\infty}(q_1) = M_{q_1}^{\infty} - m_{q_1}^{\infty} > \alpha_{j_0+1} - \beta_{j_0}.$$
 (9)

Then the gap $(\beta_{j_0} + M_{q_1}^{\infty}, \alpha_{j_0+1} + m_{q_1}^{\infty})$ disappears. If condition (9) is satisfied for all $j \in \mathbb{N}$ all gaps in the essential spectrum of \mathcal{H}_q are disappear and all bands of the $sp_{ess}\mathcal{H}_q$ are overlapping. Hence

$$sp_{ess}\mathcal{H}_q=[lpha_1,+\infty),$$

and

$$sp_{dis}\mathcal{H}_q \subset (m_q, \alpha_1 + m_{q_1}^{\infty}).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Fredholm theory of bounded operators on graphs

Let φ be a function defined on $\mathbb{R}^n.$ Then we denote by $\hat{\varphi}$ the restriction of φ on the graph $\Gamma.$

Definition

We say that $A \in \mathcal{B}(L^2(\Gamma))$ belongs to the class $\mathcal{A}(\Gamma)$ if for every function $\varphi \in C_{b,u}(\mathbb{R}^n)$

$$\lim_{t\to 0} \|[A,\widehat{\varphi_t}I]\|_{\mathcal{B}(L^2(\Gamma))} = \lim_{R\to 0} \|A\widehat{\varphi_t}I - \widehat{\varphi_t}A\|_{\mathcal{B}(L^2(\Gamma))} = 0.$$
(10)

It is easy to prove that $\mathcal{A}(\Gamma)$ is a C^* -subalgebra of $\mathcal{B}(L^2(\Gamma))$. Let $N \in \mathbb{N}$, $[-N, N]_{\mathbb{Z}} = \{ \alpha \in \mathbb{Z} : |\alpha| \le N \}$, and

$$\mathbb{G}_{N} = \left\{ g \in \mathbb{R}^{m} : g = \sum_{i=1}^{m} \alpha_{i} \mathfrak{e}_{i}, \alpha_{i} \in \left[-N, N\right]_{\mathbb{Z}} \right\}.$$

We set

$$\Gamma_N = igcup_{g \in \mathbb{G}_N} G_g$$

and let $\mathbb{P}_N \in \mathcal{B}(L^2(\Gamma))$ be the operator of the multiplication by the characteristic function of Γ_N , and $\mathbb{Q}_N = I - \mathbb{P}_N$.

3

ヘロト 人間ト 人口ト 人口ト

Definition

Let $A \in \mathcal{B}(L^2(\Gamma))$ and $\mathbb{G} \ni h_k \to \infty$. An operator $A^h \in \mathcal{B}(L^2(\Gamma))$ is called a *limit operator* of A defined by the sequence $h_k \in \mathbb{G}$, if for every $N \in \mathbb{N}$

$$\lim_{k \to \infty} \left\| \left(V_{-h_k} A V_{h_k} - A^h \right) \mathbb{P}_N \right\|_{\mathcal{B}(L^2(\Gamma))} = 0, \quad (11)$$
$$\lim_{k \to \infty} \left\| \mathbb{P}_N \left(V_{-h_k} A V_{h_k} - A^h \right) \right\|_{\mathcal{B}(L^2(\Gamma))} = 0.$$

We say that the operator A is **rich** if every sequence $\mathbb{G} \ni h_k \to \infty$ has a subsequence $\mathbb{G} \ni g_k \to \infty$ defining a limit operator A^g . We denote by Lim(A) the set of all limit operators of A.

Definition

An operator $A \in \mathcal{B}(L^2(\Gamma))$ is called locally invertible at infinity if there exist $R \in \mathbb{N}$ and operators $\mathcal{L}_R, \mathcal{R}_R \in \mathcal{B}(L^2(\Gamma))$ such that

$$\mathcal{L}_R A \mathbb{Q}_R = \mathbb{Q}_R$$
 , $\mathbb{Q}_R A \mathcal{R}_R = \mathbb{Q}_R$.

Theorem

Let $A \in \mathcal{A}(\Gamma)$ and be rich. Then A is locally invertible at infinity if and only if all limit operators $A^h \in Lim(A)$ are invertible in $L^2(\Gamma)$.

Definition

We say that $A \in \mathcal{B}(L^2(\Gamma))$ is a locally Fredholm operator if for every $R \in \mathbb{N}$ there exits operators \mathcal{L}_R , \mathcal{R}_R such that

$$\mathcal{L}_R A \mathbb{P}_R = \mathbb{P}_R + T_R^1$$
, $\mathbb{P}_R A \mathcal{R}_R = \mathbb{P}_R + T_R^2$,

where $T_R^j \in \mathcal{K}(L^2(\Gamma)), j = 1, 2.$

Theorem

Let $A \in \mathcal{A}(\Gamma)$. Then A is a Fredholm operator in $L^2(\Gamma)$ if and only if:

(i) A is a locally Fredholm operator; (ii) All limit operators $A^h \in Lim(A)$ are invertible.

Corollary

Let $A \in \mathcal{A}(\Gamma)$, and A be a locally Fredholm operator. Then

$$sp_{ess}A = \bigcup_{A^h \in Lim(A)} spA^h,$$
 (12)

where $sp_{ess}A$ is the essential spectrum of A in $L^2(\Gamma)$ that is the set of $\lambda \in \mathbb{C}$ such that $A - \lambda I$ is not Fredhom operator in $L^2(\Gamma)$.

The proof of the main theorem on the essential spectrum of quantum graphs is reduced to the this corollary.

We denote by Λ the unbounded operator generated by the Schrödinger operator $-\frac{d^2}{dx^2}$ on $\Gamma \setminus \mathcal{V}$ with domain $\tilde{\mathcal{H}}^2(\Gamma)$. Note that Λ is a nonnegative self-adjoint operator in $L^2(\Gamma)$ and $sp\Lambda \subset [0,\infty)$. Hence the operator $\Lambda_{k^2} = \Lambda + k^2 I : \tilde{H}^2(\Gamma) \to L^2(\Gamma)$ is an isomorphism. Then we prove that

$$A = \mathcal{H}_q \Lambda_{k^2}^{-1} \in \mathcal{A}(\Gamma)$$
, $Lim(A) = Lim(\mathcal{H}_q)$, $sp_{ess}A = sp_{ess}\mathcal{H}_q$,

and the theorem on the essential spectrum of the operator \mathcal{H}_q as unbounded in $L^2(\Gamma)$ follows from Corollary 10.

通 と く ヨ と く ヨ と