Schrödinger operators on a zigzag supergraphene-based carbon nanotube

Maebashi Institute of Technology, Hiroaki Niikuni QMath13

1 Introduction

Fig. 1 Allotropes of Carbon [Enyashin and Ivanovskii, 2011].

(1) graphene (2),(3) pentaheptites (4) haecklites (5),(6) graphyne (10) supergraphene (12),(13) squarographene

Fig. 2 graphene (left) and supergraphene (right)

Carbyne (Allotropes of Carbon) A Chain of Carbons • $\cdots - C \equiv C - C \equiv C - C \equiv C - C \equiv C - \cdots$ • $\cdots = C = C = C = C = C = C = C = C = \cdots$

Fig. 3 ©Yakobson, et al. (2013)

Results of Yakobson's reseach group in Rice University:

- A carbyne has an extreme tensile stiffness: It is stiffer by a facor of two than graphene and carbon nanotubes.
- A carbyne is stronger than any other known material.

The aim of this talk is to examine the spectrum of periodic Schrödinger operators on a zigzag supergraphene-based carbon nanotube.

Fig. 4 a standard zigzag carbon nanotube(Left) and a zigzag supergraphene-based carbon nanotube Γ^N (Right).

Definition 1.1. Let $\mathbb{J} = \{1, 2, 3, ..., 9\}$. For a fixed number $N \in \mathbb{N}$, we put $\mathbb{Z}_N = \mathbb{Z}/(N\mathbb{Z}) = \{0, 1, 2, ..., N - 1\}$. For each $\omega = (n, j, k) \in \mathbb{Z} := \mathbb{Z} \times \mathbb{J} \times \mathbb{Z}_N$, we define Γ_{ω} as in the figure in the next slide.

Fig. 5 The picture of $\Gamma_{n,j,k}$.

Taking the union $\Gamma^N := \bigcup_{\omega \in \mathbb{Z}} \Gamma_\omega$, we consider the Hilbert space $\mathcal{H}_N := L^2(\Gamma^N) = \bigoplus_{\omega \in \mathbb{Z}} L^2(\Gamma_\omega) = \bigoplus_{\omega \in \mathbb{Z}} L^2(0, 1)$. For a real-valued function $q \in L^2(0, 1)$, we consider a Schrödinger operator defined as

$$(Hf_{\omega})(x) = -f_{\omega}''(x) + q(x)f_{\omega}(x), \quad x \in (0,1) \simeq \Gamma_{\omega}^{\circ}, \quad \omega \in \mathbb{Z},$$

Dom(H)

$$= \begin{cases} \bigoplus_{\omega \in \mathbb{Z}} f_{\omega} \in \mathcal{H} \\ \bigoplus_{\omega \in \mathbb{Z}} (-f_{\omega}^{\prime\prime} + qf_{\omega}) \in L^{2}(\Gamma^{N}), \\ f_{n,1,k}(1) = f_{n,2,k}(0), \quad f_{n,1,k}^{\prime}(1) = f_{n,2,k}^{\prime}(0), \\ f_{n,2,k}(1) = f_{n,3,k}(0), \quad f_{n,2,k}^{\prime}(1) = f_{n,3,k}^{\prime}(0), \\ f_{n,3,k}(1) = f_{n,4,k}(0) = f_{n,7,k-1}(0), \\ -f_{n,3,k}^{\prime}(1) + f_{n,4,k}^{\prime}(0) + f_{n,7,k-1}^{\prime}(0) = 0, \\ f_{n,4,k}(1) = f_{n,5,k}(0), \quad f_{n,4,k}^{\prime}(1) = f_{n,5,k}^{\prime}(0), \\ f_{n,5,k}(1) = f_{n,6,k}(0), \quad f_{n,5,k}^{\prime}(1) = f_{n,6,k}^{\prime}(0), \\ f_{n,6,k}(1) = f_{n,9,k}(1) = f_{n+1,1,k}(0) = 0, \\ f_{n,7,k}(1) = f_{n,8,k}(0), \quad f_{n,7,k}^{\prime}(1) = f_{n,8,k}^{\prime}(0), \\ f_{n,8,k}(1) = f_{n,9,k}(0), \quad f_{n,8,k}^{\prime}(1) = f_{n,9,k}^{\prime}(0) \\ for \quad n \in \mathbb{Z} \text{ and } k \in \mathbb{Z}_{N} \end{cases}$$

Definition 1.2. We call Γ^1 a degenerate zigzag supergraphene-based carbon nanotube.

For convenience, we abbreviate $\Gamma_{n,j,1}$ as $\Gamma_{n,j}$ for each $(n,j) \in \mathbb{Z}_1 := \mathbb{Z} \times \mathbb{J}$.

Fig. 6 A degenerate zigzag supergraphene-based CNT Γ^1 .

For a fixed $N \in \mathbb{N}$, we put $s = e^{i\frac{2\pi}{N}}$. For $k = 1, 2, \ldots, N$, we consider the operator H_k in $\mathcal{H}_1 := L^2(\Gamma^1)$ defined as

$$(H_k f_{n,j})(x) = -u_{n,j}''(x) + q(x)u_{n,j}(x), \quad x \in (0,1) \simeq \Gamma_{n,j}^{\circ}, \quad (n,j) \in \mathcal{Z}_1,$$

 $\operatorname{Dom}(H_k)$

$$\bigoplus_{(n,j)\in\mathcal{Z}_{1}} (-u_{n,j}'' + qu_{n,j}) \in L^{2}(\Gamma^{1}), \\ u_{n,1}(1) = u_{n,2}(0), \quad u_{n,1}'(1) = u_{n,2}'(0), \\ u_{n,2}(1) = u_{n,3}(0), \quad u_{n,2}'(1) = u_{n,3}'(0), \\ u_{n,3}(1) = u_{n,4}(0) = s^{k}u_{n,7}(0), \\ -u_{n,3}'(1) + u_{n,4}'(0) + s^{k}u_{n,7}'(0) = 0, \\ u_{n,4}(1) = u_{n,5}(0), \quad u_{n,4}'(1) = u_{n,5}'(0), \\ u_{n,5}(1) = u_{n,6}(0), \quad u_{n,5}'(1) = u_{n,6}'(0), \\ u_{n,6}(1) = u_{n,9}(1) = u_{n+1,1}(0), \\ -u_{n,6}'(1) - u_{n,9}'(1) + u_{n+1,1}'(0) = 0, \\ u_{n,7}(1) = u_{n,8}(0), \quad u_{n,7}'(1) = u_{n,8}'(0), \\ u_{n,8}(1) = u_{n,9}(0), \quad u_{n,8}'(1) = u_{n,9}'(0) \\ \text{for } n \in \mathbb{Z}$$

 Utilizing the same method as [Korotyaev and Lobanov, '07], we obtain

$$\sigma(H) = \bigcup_{k=1}^{N} \sigma(H_k).$$

Thus, it is sufficient to examine $\sigma(H_k)$ in order to examine $\sigma(H)$.

• In order to examine $\sigma(H_k)$, we recall the spectral theory for the corresponding Hill operator

$$L := -d^2/dx^2 + q$$

in $L^2(\mathbb{R})$, where the real valued function $q \in L^2(0,1)$, appearing as the potential of H, is extended to the 1-periodic function on \mathbb{R} . Review and Notation (Spectral Theory for the Hill operator) For $\lambda \in \mathbb{C}$, let $\theta(x, \lambda)$ and $\varphi(x, \lambda)$ be the solutions to the Schrödinger equation

$$-y''(x,\lambda) + q(x)y(x,\lambda) = \lambda y(x,\lambda), \quad x \in \mathbb{R},$$
 (1)

as well as the initial conditions $\theta(0,\lambda) = 1$, $\theta'(0,\lambda) = 0$ and $\varphi(0,\lambda) = 0$, $\varphi'(0,\lambda) = 1$, respectively.

(I) Since $\theta(x,\lambda)$, $\theta'(x,\lambda)$, $\varphi(x,\lambda)$, $\varphi'(x,\lambda)$ are entire in $\lambda \in \mathbb{C}$, the Lyapunov function

$$\Delta(\lambda) := \frac{\theta(1,\lambda) + \varphi'(1,\lambda)}{2}$$

is also entire in $\lambda \in \mathbb{C}$.

(II) It is known as the Floquet–Bloch theory that the spectrum of L is characterized by $\Delta(\lambda)$ as

$$\sigma(L) = \sigma_{ac}(L) = \{\lambda \in \mathbb{R} | \quad |\Delta(\lambda)| \le 1\} = \bigcup_{j \in \mathbb{N}} [\lambda_{2j-2}, \lambda_{2j-1}],$$

where $\lambda_0, \lambda_1, \lambda_2, \ldots$ are zeroes of $\Delta(\lambda) \pm 1$ and are labeled in increasing order.

(III) The zeroes of $\Delta(\lambda) \pm 1$ satisfy the inequality

$$\lambda_0 < \lambda_1 \leq \lambda_2 < \lambda_3 \leq \lambda_4 < \dots$$

(IV) For j ∈ N, the interval B_j := [λ_{2j-2}, λ_{2j-1}] is called the jth band of σ(L), counted from the bottom. Two consecutive bands B_j and B_{j+1} are separated by G_j := (λ_{2j-1}, λ_{2j}), which is called the jth gap of σ(L).
(V) Let σ_P(L) := ∫u ≥∞ be the Dirichlet spectrum namely.

(V) Let $\sigma_D(L) := \{\mu_n\}_{n=1}^{\infty}$ be the Dirichlet spectrum, namely, the spectrum of the eigenvalue problem $-y'' + qy = \lambda y$ with y(0) = y(1) = 0. Recall $\mu_n \in [\lambda_{2n-1}, \lambda_{2n}]$ for each $n \in \mathbb{N}$. (VI) $\sigma_{1/2}(L) := \{\lambda \in \mathbb{R} | \Delta = \frac{1}{2} \}$. $\sigma_{-1/2}(L) := \{\lambda \in \mathbb{R} | \Delta = -\frac{1}{2} \}$. $\sigma_{\pm 1/2}(L) := \sigma_{1/2}(L) \cup \sigma_{-1/2}(L)$. 2 $\sigma_{\infty}(H_k)$ and Discriminants of $\sigma_{ac}(H_k)$

We put
$$\Delta_{-} = rac{ heta(1,\lambda) - arphi'(1,\lambda)}{2}$$
.

- $\sigma_{\infty}(H)$; the set of eigenvalues of H with infinite multiplicities
- $\sigma_{ac}(H)$; the absolutely continuous spectrum of H.

If there exists some $\ell \in \mathbb{N}$ such that $(N,k) = (2\ell,\ell),$ then we define

$$\begin{split} D(\ell,\lambda) &= D\left(\frac{N}{2},\lambda\right) \\ &= 144\Delta^6 - (216 + 16\Delta_-^2)\Delta^4 + (81 + 8\Delta_-^2)\Delta^2 - (1 + \Delta_-^2) \\ \text{and } \sigma_{\ell,0} &:= \{\lambda \in \mathbb{R} | \ D(\ell,\lambda) = 0\}. \end{split}$$

If $(N,k) \neq (2\ell,\ell)$ for any $\ell \in \mathbb{N}$, then we define

$$D(k,\lambda) = \frac{1}{4\cos\frac{\pi k}{N}} \Big\{ 144\Delta^6 - (216 + 16\Delta_-^2)\Delta^4 + (81 + 8\Delta_-^2)\Delta^2 - (3 + s^k + s^{-k} + \Delta_-^2) \Big\}.$$
 (2)

For k = 1, 2, ..., N, we notice that $\cos \frac{\pi k}{N} = 0$ is equivalent to $k = \frac{N}{2}$. Thus, (2) is well-defined. We have the followings: **Theorem 2.1.** For a fixed $\ell \in \mathbb{N}$, we obtain the followings: (i) If $N = 2\ell - 1$, then we have $\sigma(H_k) = \sigma_{\infty}(H_k) \cup \sigma_{ac}(H_k)$ for k = 1, 2, ..., N, where

$$\sigma_{\infty}(H_k) = \sigma_{\pm 1/2}(L) \cup \sigma_D(L)$$

and

$$\sigma_{ac}(H_k) = \{\lambda \in \mathbb{R} | |D(k,\lambda)| \le 1\}.$$

(ii) If $N = 2\ell$, then we have $\sigma(H_k) = \sigma_{\infty}(H_k) \cup \sigma_{ac}(H_k)$ for k = 1, 2, ..., N, where

$$\sigma_{\infty}(H_k) = \begin{cases} \sigma_{\pm 1/2}(L) \cup \sigma_D(L) & \text{if } k = \{1, \dots, N\} \setminus \{N/2\}, \\ \sigma_{\pm 1/2}(L) \cup \sigma_D(L) \cup \sigma_{\ell,0} & \text{if } k = N/2, \end{cases}$$

and

$$\sigma_{ac}(H_k) = \begin{cases} \{\lambda \in \mathbb{R} | |D(k,\lambda)| \le 1\} & \text{if } k \in \{1,\dots,N\} \setminus \{N/2\}, \\ \emptyset & \text{if } k = N/2. \end{cases}$$

Abbreviate $\theta(1,\lambda)$, $\theta'(1,\lambda)$, $\varphi(1,\lambda)$, $\varphi'(1,\lambda)$ to θ_1 , θ'_1 , φ_1 , φ'_1 .

Lemma 2.2. For a fixed $N \in \mathbb{N}$, we have $\sigma_{1/2}(L) \cup \sigma_{-1/2}(L) \subset \sigma_{\infty}(H_k)$ for k = 1, 2, ..., N.

Proof. (I) We show $\sigma_{1/2}(L) \subset \sigma_{\infty}(H_k)$. Pick a $\lambda \in \sigma_{1/2}(L)$, arbitrarily. We put $v_1(x,\lambda) = \varphi_1 \theta(x,\lambda) + \varphi'_1 \varphi(x,\lambda)$ and $v_2(x,\lambda) = \varphi_1 \theta(x,\lambda) - \theta_1 \varphi(x,\lambda)$. (a) Assume that k = 0. Then, we define

$$u_{0,4}^{(0)}(x,\lambda) = \varphi(x,\lambda), \quad u_{0,5}^{(0)}(x,\lambda) = v_1(x,\lambda),$$
$$u_{0,6}^{(0)}(x,\lambda) = v_2(x,\lambda), \quad u_{0,7}^{(0)}(x,\lambda) = -\varphi(x,\lambda),$$
$$u_{0,8}^{(0)}(x,\lambda) = -v_1(x,\lambda), \quad u_{0,9}^{(0)}(x,\lambda) = -v_2(x,\lambda)$$

and $u_{n,j}^{(0)}(x,\lambda) = 0$ for $(n,j) \neq (0,4), (0,5), (0,6), (0,7), (0,8), (0,9).$ Furthermore, we define $u^{(n)} = \{u_{m-n,j}^{(0)}\}_{(m,j)\in\mathbb{Z}_1}$. Then, we can directly check $\{u^{(n)}\}_{n\in\mathbb{Z}}\subset \text{Dom}(H_0)$ and $H_0u^{(n)} = \lambda u^{(n)}$ for any $n\in\mathbb{Z}$. Thus, we see that $\lambda\in\sigma_{\infty}(H_0)$. Hence, we have $\sigma_{1/2}(L)\subset\sigma_{\infty}(H_0)$.

(b) Assume that
$$k = 1, 2, ..., N - 1$$
. Then, we put
 $\alpha_k = -1 + s^{-k}, \ \beta_k = \frac{1 - s^{-k}}{1 - s^k}, \ \gamma_k = -\frac{1 - s^{-k}}{1 - s^k},$
 $u_{0,4}^{(0)}(x,\lambda) = \varphi(x,\lambda), \quad u_{0,5}^{(0)}(x,\lambda) = v_1(x,\lambda),$
 $u_{0,6}^{(0)}(x,\lambda) = v_2(x,\lambda), \quad u_{0,7}^{(0)}(x,\lambda) = -s^{-k}\varphi(x,\lambda),$
 $u_{0,8}^{(0)}(x,\lambda) = -s^{-k}v_1(x,\lambda), \quad u_{0,9}^{(0)}(x,\lambda) = -s^{-k}v_2(x,\lambda),$
 $u_{1,1}(x,\lambda) = \alpha_k\varphi(x,\lambda), \quad u_{1,2}(x,\lambda) = \alpha_kv_1(x,\lambda),$
 $u_{1,3}(x,\lambda) = \alpha_kv_2(x,\lambda), \quad u_{1,4}(x,\lambda) = \beta_k\varphi(x,\lambda),$
 $u_{1,5}(x,\lambda) = \beta_kv_1(x,\lambda), \quad u_{1,6}(x,\lambda) = \beta_kv_2(x,\lambda),$
 $u_{1,7}(x,\lambda) = \gamma_k\varphi(x,\lambda), \quad u_{1,8}(x,\lambda) = \gamma_kv_1(x,\lambda),$
 $u_{1,9}(x,\lambda) = \gamma_kv_2(x,\lambda).$

If $n \neq 1$ or $(n, j) \neq (0, 4), (0, 5), (0, 6)$ is valid, then we define

 $u_{n,j}^{(0)}(x,\lambda) = 0$. Then, for any $n \in \mathbb{Z}$, we see that $u^{(n)} := \{u_{m-n,j}^{(0)}\}_{(m,j)\in \mathbb{Z}_1}$ is an eigenvalue of H_k . So, we obtain $\sigma_{1/2}(L) \subset \sigma_{\infty}(H_k)$.

In a similar way, we can construct infinite many eigenfunctions for $\lambda \in \sigma_{-1/2}(L)$.

Lemma 2.3. For a fixed $N \in \mathbb{N}$, we have $\sigma_D(L) \subset \sigma_{\infty}(H_k)$ for k = 1, 2, ..., N. A direct integral decomposition for H_k We examine $\sigma(H_k) \setminus (\sigma_{\pm 1/2}(L) \cup \sigma_D(L))$. For $\mu \in [0, 2\pi)$, we define the Hilbert space $\mathcal{H}_{\mu} = \bigoplus_{j=1}^{9} L^2(\Gamma_{0,j})$. Prepare the Hilbert space

$$\mathcal{H} = \int_{[0,2\pi)}^{\oplus} \mathcal{H}_{\mu} \frac{d\mu}{2\pi} = L^2 \left([0,2\pi), \mathcal{H}_{\mu}, \frac{d\mu}{2\pi} \right)$$

and the unitary operator $U: L^2(\Gamma^1) \to \mathcal{H}$ defined as

$$(Uf)(x,\mu) = \sum_{p \in \mathbb{Z}} e^{ip\mu} f(x-p)$$

for $f = (f_n)_{n \in \mathbb{Z}} = (f_{n,j})_{(n,j) \in \mathbb{Z}_1} \in L^2(\Gamma)$. A fiber operator $H_k(\mu)$ in \mathcal{H}_{μ} for H_k is defined as follows:

 $(H_k(\mu)f_j)(x) = -f_j''(x) + q(x)f_j(x), \quad x \in (0,1) \simeq \Gamma_{0,j}^{\circ}, \quad j \in \mathbb{J},$

$$\operatorname{Dom}(H_k(\mu)) = \begin{cases}
9 \\
\bigoplus_{j=1}^{9} (-f_j'' + qf_j) \in \mathcal{H}_{\mu}, \\
f_1(1) = f_2(0), \quad f_1'(1) = f_2'(0), \\
f_2(1) = f_3(0), \quad f_2'(1) = f_3'(0), \\
f_3(1) = f_4(0) = s^k f_7(0), \\
-f_3'(1) + f_4'(0) + s^k f_7'(0) = 0, \\
f_4(1) = f_5(0), \quad f_4'(1) = f_5'(0), \\
f_5(1) = f_6(0), \quad f_5'(1) = f_6'(0), \\
f_6(1) = f_9(1) = e^{i\mu} f_1(0), \\
-f_6'(1) - f_9'(1) + e^{i\mu} f_1'(0) = 0, \\
f_7(1) = f_8(0), \quad f_7'(1) = f_8'(0), \\
f_8(1) = f_9(0), \quad f_8'(1) = f_9'(0). \end{cases}$$

Then, we obtain a direct integral representation of H_k like

$$UH_k U^{-1} = \int_{[0,2\pi)}^{\oplus} H_k(\mu) \frac{d\mu}{2\pi}.$$

- $\{E_n(\mu)\}_{n\in\mathbb{N}}$; the sequence of the eigenvalues of $H_k(\mu)$
- \mathcal{N} ; the set of natural numbers n such that $E_n(\mu)$ does depend on $\mu \in [0, 2\pi)$.
- $\sigma(H_k) = \sigma_{\infty}(H_k) \cup \sigma_{ac}(H_k)$, where

$$\sigma_{\infty}(H_k) = \bigcup_{n \in \mathcal{N}^c} \{ E_n(\mu) \}$$

and

$$\sigma_{ac}(H_k) = \bigcup_{n \in \mathcal{N}} \bigcup_{\mu \in [0, 2\pi)} \{ E_n(\mu) \}.$$

Proof of Theorem 2.1. We pick $\lambda \notin \sigma_{\pm 1/2}(L) \cup \sigma_D(L)$, arbitrarily. For this λ , we consider the characteristic equation $H_k(\mu)f = \lambda f$ for $0 \notin f = (f_j)_{j=1}^9 \in \text{Dom}(H_k(\mu))$. Namely, we consider the following system:

$$-f_{j}''(x) + q(x)f_{j}(x) = \lambda f_{j}(x), \quad x \in (0,1) \simeq \Gamma_{0,j}^{\circ}, \quad j \in \mathbb{J}, \quad (3)$$

$$f_{1}(1) = f_{2}(0), \quad f_{2}(1) = f_{3}(0), \quad f_{4}(1) = f_{5}(0), \quad (4)$$

$$f_{5}(1) = f_{6}(0), \quad f_{7}(1) = f_{8}(0), \quad f_{8}(1) = f_{9}(0), \quad (5)$$

$$f_{3}(1) = f_{4}(0) = s^{k} f_{7}(0), \quad f_{6}(1) = f_{9}(1) = e^{i\mu} f_{1}(0), \quad (6)$$

$$f_{1}'(1) = f_{2}'(0), \quad f_{2}'(1) = f_{3}'(0), \quad f_{4}'(1) = f_{5}'(0), \quad (7)$$

$$f_{5}'(1) = f_{6}'(0), \quad f_{7}'(1) = f_{8}'(0), \quad f_{8}'(1) = f_{9}'(0), \quad (8)$$

$$-f_{3}'(1) + f_{4}'(0) + s^{k} f_{7}'(0) = 0, -f_{6}'(1) - f_{9}'(1) + e^{i\mu} f_{1}'(0) = 0.(9)$$

We first solve (3). It follows $\varphi_1 = \varphi(1, \lambda) \neq 0$ by $\lambda \notin \sigma_D(L)$. Thus, any solution to $-f'' + qf = \lambda f$ is given as

$$f(x,\lambda) = \theta(x,\lambda)f(0,\lambda) + \frac{\varphi(x,\lambda)}{\varphi_1}(f(1,\lambda) - \theta_1 f(0,\lambda)) \quad (10)$$

on [0,1] for $\lambda \notin \sigma_D(L)$. Let us put $X_1 = f_1(0)$, $X_2 = f_2(0)$, $X_3 = f_3(0)$, $X_4 = f_4(0)$, $X_5 = f_5(0)$, $X_6 = f_6(0)$, $X_7 = f_8(0)$, $X_8 = f_9(0)$.

Putting
$$w(x,\lambda) = \theta(x,\lambda) - \frac{\theta(1,\lambda)}{\varphi(1,\lambda)}\varphi(x,\lambda)$$
, we have

$$\begin{split} f_1(x,\lambda) &= w(x,\lambda)X_1 + \frac{\varphi(x,\lambda)}{\varphi_1}X_2, \quad f_2(x,\lambda) = w(x,\lambda)X_2 + \frac{\varphi(x,\lambda)}{\varphi_1}X_3, \\ f_3(x,\lambda) &= w(x,\lambda)X_3 + \frac{\varphi(x,\lambda)}{\varphi_1}X_4, \quad f_4(x,\lambda) = w(x,\lambda)X_4 + \frac{\varphi(x,\lambda)}{\varphi_1}X_5, \\ f_5(x,\lambda) &= w(x,\lambda)X_5 + \frac{\varphi(x,\lambda)}{\varphi_1}X_6, \quad f_6(x,\lambda) = w(x,\lambda)X_6 + \frac{\varphi(x,\lambda)}{\varphi_1}e^{i\mu}X_1, \\ f_7(x,\lambda) &= w(x,\lambda)X_4 + \frac{\varphi(x,\lambda)}{\varphi_1}X_7, \quad f_8(x,\lambda) = w(x,\lambda)X_7 + \frac{\varphi(x,\lambda)}{\varphi_1}X_8, \\ f_9(x,\lambda) &= w(x,\lambda)X_8 + \frac{\varphi(x,\lambda)}{\varphi_1}e^{i\mu}X_1 \end{split}$$

due to (4), (5), (6) and (10). Substituting these 9 formulas into (7), (8), (9), we obtain a system on $\{X_j\}_{j=1}^8$ as follows:

$$\begin{aligned} X_1 - 2\Delta X_2 + X_3 &= 0, \\ X_2 - 2\Delta X_3 + X_4 &= 0, \\ X_3 - (2\theta_1 + \varphi_1')X_4 + X_5 + s^k X_7 &= 0, \\ X_4 - 2\Delta X_5 + X_6 &= 0, \\ e^{i\mu}X_1 + X_5 - 2\Delta X_6 &= 0, \\ s^{-k}X_4 - 2\Delta X_7 + X_8 &= 0, \\ e^{i\mu}X_1 + X_7 - 2\Delta X_8 &= 0, \\ -(2\varphi_1' + \theta_1)e^{i\mu}X_1 + e^{i\mu}X_2 + X_6 + X_8 &= 0. \end{aligned}$$

Here, we recall Δ is the discriminant of $\sigma(L)$: $\Delta = \frac{\theta_1 + \varphi'_1}{2}$.

Let $M_k(\lambda, \mu)$ be the coefficient matrix of the system on X_1, X_2, \ldots, X_8 :

We have a dispersion relation

$$D = e^{-i\mu} \det M_k(\lambda, \mu)$$

= $(4\Delta^2 - 1) \left[4 \cos\left(\frac{\pi k}{N} + \mu\right) \cos\frac{\pi k}{N} - 144\Delta^6 + (216 + 16\Delta_-^2)\Delta^4 - (8\Delta_-^2 + 81)\Delta^2 + 3 + s^k + s^{-k} + \Delta_-^2 \right].$

Note that $4\Delta^2 - 1 \neq 0$ for $\lambda \notin \sigma_{\pm 1/2}(L)$. Thus, for $\lambda \notin \sigma_{\pm 1/2}(L) \cup \sigma_D(L)$, we see that $\det M_k(\lambda, \mu) = 0$ is equivalent to

$$4\cos\left(\frac{\pi k}{N}+\mu\right)\cos\frac{\pi k}{N}$$

= $144\Delta^{6} - (216+16\Delta_{-}^{2})\Delta^{4} + (8\Delta_{-}^{2}+81)\Delta^{2} - (3+s^{k}+s^{-k}+\Delta_{-}^{2}).$

This gives us a spectral discriminant $D(k, \lambda)$. We recall

$$D(k,\lambda) = \frac{1}{4\cos\frac{\pi k}{N}} \Big\{ 144\Delta^6 - (216 + 16\Delta_-^2)\Delta^4 + (81 + 8\Delta_-^2)\Delta^2 - (3 + s^k + s^{-k} + \Delta_-^2) \Big\}.$$

3 Absolutely continuous spectrum of H_k : Unperturbed case

In the unperturbed case, we obtain a spectral discriminant

$$= \frac{1}{4\cos\frac{\pi k}{N}} \left\{ 144\cos^6\sqrt{\lambda} - 216\cos^4\sqrt{\lambda} + 81\cos^2\sqrt{\lambda} - \left(3 + 2\cos\frac{2\pi k}{N}\right) \right\}$$

for $k \in \{1, 2, ..., N\} \setminus \{N/2\}$.

Fig. 7 The graph of $D_0(0,\lambda)$, $D_0(1,\lambda)$, $D_0(2,\lambda)$, $D_0(3,\lambda)$, $D_0(4,\lambda)$, $D_0(5,\lambda)$ and $\cos\sqrt{\lambda}$ in the case where N = 15. This picture hinted the results of the following Theorem 4.1. Namely, one can numerically expect that $\lambda_{k,2j}^- = \lambda_{k,2j}^+$ for $k = \frac{N}{3}$ and $\lambda_{k,2j-1}^- = \lambda_{k,2j-1}^+$ for k = 0 in the case where $q \equiv 0$.

4 Main Results

Theorem 4.1. Let $N = 2\ell - 1$ or $N = 2\ell$ for a fixed $\ell \in \mathbb{N}$. (i) For k = 0, 1, 2, ..., N, we have $\sigma_{ac}(H_k) = \sigma_{ac}(H_{N-k})$. Hence, we have

$$\sigma_{ac}(H) = \bigcup_{k=0}^{\ell-1} \sigma_{ac}(H_k).$$

(ii) For $k = 0, 1, 2, ..., \ell - 1$, there exists real sequence

 $\lambda_{k,0}^+ < \lambda_{k,1}^- \le \lambda_{k,1}^+ < \lambda_{k,2}^- \le \lambda_{k,2}^+ < \dots < \lambda_{k,n}^- \le \lambda_{k,n}^+ < \dots$

such that $\sigma_{ac}(H_k) = \bigcup_{j=1}^{\infty} [\lambda_{k,j-1}^+, \lambda_{k,j}^-].$

Namely, $\sigma_{ac}(H_k)$ has the band structure and hence we can define the *j*th band $\sigma_{k,j} = [\lambda_{k,j-1}^+, \lambda_{k,j}^-]$ and the *j*th spectral gap $\gamma_{k,j} = (\lambda_{k,j}^-, \lambda_{k,j}^+)$ for each $j \in \mathbb{N}$. (iii)

- For $k \in \{1, 2, \dots, \ell 1\}$, we have $\lambda_{k,2j}^- \neq \lambda_{k,2j}^+$ for every $j \in \mathbb{N}$.
- For $k \in \{0, 1, 2, ..., \ell 1\} \setminus \{\frac{N}{3}\}$, we have $\lambda_{k,2j-1}^- \neq \lambda_{k,2j-1}^+$.
- If $k \in \{0, 1, 2, ..., \ell 1\} \setminus \{0, \frac{N}{3}\}$, then every spectral gap of H_k is not degenerate, i.e., $\gamma_{k,j} \neq \emptyset$ is valid for all $j \in \mathbb{N}$.

Asymptotic behavior of the spectral band edges Notation For $q \in L^2(0,1)$, $j,n \in \mathbb{N}$ and p = 1,3,5,7,9,11, we put

$$q_{0} = \int_{0}^{1} q(x)dx,$$

$$\hat{q}_{n} = \int_{0}^{1} q(x)e^{2\pi ix}dx,$$

$$q_{c,j,n} = \int_{0}^{1} (1-2t)^{j}q(t)\cos 2n\pi tdt,$$

$$q_{s,j,n} = \int_{0}^{1} (1-2t)^{j}q(t)\sin 2n\pi tdt,$$

$$q_{s,j,n,p} = \int_{0}^{1} (1-2t)^{j}q(t)\sin u_{\frac{N}{3},p+12n}^{\pm}(1-2t)dt.$$

Furthermore, for every $n \in \mathbb{N}$, we designate

$$\begin{aligned} u_{0,12n}^{+} &= 2n\pi, \quad u_{0,12n+2}^{\pm} = \frac{\pi}{3} + 2n\pi, \quad u_{0,12n+4}^{\pm} = \frac{2}{3}\pi + 2n\pi, \\ u_{0,12n+6}^{\pm} &= \pi + 2n\pi, \quad u_{0,12n+8}^{\pm} = \frac{4}{3}\pi + 2n\pi, \\ u_{0,12n+10}^{\pm} &= \frac{5}{3}\pi + 2n\pi, \quad u_{0,12n+12}^{-} = 2\pi + 2n\pi, \\ u_{\frac{N}{3},12n+1}^{\pm} &= 2n\pi + \frac{\pi}{6}, \quad u_{\frac{N}{3},12n+3}^{\pm} = \frac{\pi}{2} + 2n\pi, \\ u_{\frac{N}{3},12n+5}^{\pm} &= \frac{5}{6}\pi + 2n\pi, \quad u_{\frac{N}{3},12n+7}^{\pm} = \frac{7}{6}\pi + 2n\pi, \\ u_{\frac{N}{3},12n+9}^{\pm} &= \frac{3}{2}\pi + 2n\pi, \quad u_{\frac{N}{3},12n+11}^{\pm} = \frac{11}{6}\pi + 2n\pi. \end{aligned}$$

Then, we have the following results for $k = 0, 1, 2, \ldots, \ell - 1$.

Theorem 4.2. (i) Edges of even-numbdered spectral gaps behave as follows: (a) Let $k = 1, 2, ..., \ell - 1$. For p = 1, 2, 3, 4, 5, 6, we have

$$\lambda_{k,12n+2p}^{\pm} = (u_{k,12n+2p}^{\pm})^2 + q_0 + o\left(\frac{1}{n}\right) \quad \text{as } n \to \infty.$$

(b) Let k = 0. Then, we have

$$\lambda_{0,12n+p}^{\pm} = (u_{0,12n+p}^{\pm})^2 + q_0 + o\left(\frac{1}{n}\right) \text{ for } p = 2, 4, 8, 10,$$

$$\lambda_{0,12n+12}^{\pm} = 4(n+1)^2 \pi^2 + q_0 \pm \sqrt{|\hat{q}_{2n+2}|^2 - \frac{8}{27}q_{s,0,2n+2}^2 + o\left(\frac{1}{n}\right)} + \mathcal{O}\left(\frac{1}{n}\right)$$

$$\lambda_{0,12n+6}^{\pm} = (2n+1)^2 \pi^2 + q_0 \pm \sqrt{|\hat{q}_{2n+1}|^2 - \frac{8}{27}q_{s,0,2n+1}^2 + o\left(\frac{1}{n}\right)} + \mathcal{O}\left(\frac{1}{n}\right)$$

,

as $n
ightarrow \infty$.

(ii) Edges of odd-numbdered spectral gaps behave as follows: (a) Let $k \neq \frac{N}{3}$ or q be even. Then, for p = 1, 3, 5, 7, 9, 11, we have $\lambda_{k,12n+p}^{\pm} = (u_{k,12n+p}^{\pm})^2 + q_0 + o\left(\frac{1}{n}\right) \quad \text{as } n \to \infty.$ (b) Let $k = \frac{N}{3}$ and q be not even. For p = 3, 9, we have $\lambda_{\frac{N}{3},p+12n}^{\pm} = (u_{\frac{N}{3},p+12n}^{\pm})^2 + q_0 \pm \frac{\sqrt{789}}{108} \sqrt{q_{s,0,n,p}^2} + o\left(\frac{1}{n}\right) + o\left(\frac{1}{n}\right)$ as $n \to \infty$. For p = 1, 5, 7, 11, we have

$$\lambda_{\frac{N}{3},p+12n}^{\pm} = \left(u_{\frac{N}{3},1+12n}^{+}\right)^{2} + q_{0} \pm \frac{411}{1944}\sqrt{q_{s,0,n,p}^{2}} + o\left(\frac{1}{n}\right) + o\left(\frac{1}{n}\right)$$

as $n
ightarrow \infty$.

Absence of spectral gaps

Theorem 4.3. Let $q \in L^2(0,1)$ be real-valued. For each $n \in \mathbb{N}$, we have the followings: (i) We have $\gamma_{0,12n-10} = \gamma_{0,12n-8} = \gamma_{0,12n-4} = \gamma_{0,12n-2} = \emptyset$. (ii) If $\frac{N}{3} \in \mathbb{N}$ and q is even, then we have $\gamma_{\frac{N}{3},12n-11} = \gamma_{\frac{N}{3},12n-7} = \gamma_{\frac{N}{3},12n-5} = \gamma_{\frac{N}{3},12n-11} = \emptyset$.

5 Proof of Theorems

Discriminant of $z^3 + pz + q = 0$: $\mathcal{D} = -(4p^3 + 27q^2)$

- If $\mathcal{D} > 0$, then $z^3 + pz + q = 0$ has three distinct real roots.
- If $\mathcal{D} = 0$, then at least 2 roots of $z^3 + pz + q = 0$ coincide, and any root is real.
- If $\mathcal{D} < 0$, then $z^3 + pz + q = 0$ has 1 real root and 2 complex conjugate roots.

François Viète's solution to a cubic equation (16th century) If $\mathcal{D} > 0$, then the solutions to $z^3 + pz + q = 0$ ($p < 0, q \in \mathbb{R}$) is given by

$$\alpha_k = 2\sqrt{-\frac{p}{3}}\cos\left\{\frac{1}{3}\arccos\left(\frac{3q}{2p}\sqrt{\frac{-3}{p}}\right) - \frac{2\pi}{3}k\right\}, k = 0, 1, 2.$$

We examine the asymptotics for zeroes of $D(k, \lambda) = -1$, which is equivalent to

$$\Delta^{6} - \left(\frac{3}{2} + \frac{\Delta_{-}^{2}}{9}\right) \Delta^{4} + \left(\frac{9}{16} + \frac{\Delta_{-}^{2}}{18}\right) \Delta^{2} - \frac{1}{144} \left(3 + 2\cos\frac{2\pi k}{N} - 4\cos\frac{\pi k}{N} + \Delta_{-}^{2}\right) = 0.$$

Putting $\Delta^2 = z + \left(\frac{1}{2} + \frac{\Delta_-^2}{27}\right)$, this is moreover equivalent to $z^3 - \left(\frac{3}{16} + \frac{\Delta_-^2}{18} + \frac{\Delta_-^4}{243}\right)z - \frac{f_k(-1)}{288} - \frac{\Delta_-^2}{9}\left(\frac{1}{8} + \frac{\Delta_-^2}{54} + \frac{2\Delta_-^4}{2187}\right) = 0.$

Here, we put $f_k(-1) = 8c_k^2 - 8c_k - 7$ and $c_k = \cos \frac{\pi k}{N}$ for $k = 0, 1, ..., \ell - 1$.

We consider its discriminant $D_k^- = D_k^-(\lambda) = 4p_-^3 - 27q_-^2$, where

$$p_{-} = \frac{3}{16} + \frac{\Delta_{-}^{2}}{18} + \frac{\Delta_{-}^{4}}{243}, \ q_{-} = \frac{f_{k}(-1)}{288} + \frac{\Delta_{-}^{2}}{9} \underbrace{\left(\frac{1}{8} + \frac{\Delta_{-}^{2}}{54} + \frac{2\Delta_{-}^{4}}{2187}\right)}_{\clubsuit}$$

Let $q_{\frac{N}{3},-}$ be the q_- for $k = \frac{N}{3}$. It follows by straightforward calculations that $D_{\frac{N}{3}}^- = \frac{3}{64}\Delta_-^2 + \frac{1}{144}\Delta_-^4 + \frac{1}{2916}\Delta_-^6$ and

$$D_{k}^{-} = D_{\frac{N}{3}}^{-} - \frac{1}{48} \left(c_{k} - \frac{1}{2} \right)^{2} \left\{ \left(c_{k} - \frac{1}{2} \right)^{2} - \frac{9}{4} + 8\Delta_{-}^{2} \times (\clubsuit) \right\}$$

Lemma 5.1. (i) If $k = \frac{N}{3}$ and q is even, then we have $D_{\frac{N}{3}}^{-} = 0$. (ii) Assume that $k \neq \frac{N}{3}$ or q is not even. Then, for $k = 0, 1, \ldots, \ell - 1$, there exists some $\lambda_0 \in \mathbb{R}$ such that $D_k^- > 0$ for any $\lambda \geq \lambda_0$.

In the case of $D_k^- > 0$, we can construct Viéte's solution to $D(k, \lambda) = -1$:

$$\Delta^{2} = \frac{1}{2} + \frac{1}{2} \cos\left(\frac{1}{3} \arccos\frac{f_{k}(-1)}{9} - \frac{2\pi m}{3}\right) + \mathcal{O}(\Delta^{2}_{-})$$

as $\lambda \to +\infty$.

Schrödinger operators on a zigzag supergraphene-based carbon nanotube, submitted.

Thank you for your attention.

This work is supported by Grant-in-Aid for Young Scientists (2580085), Japan Society for Promotion of Science.