8, October, 2016

Schrödinger operators on a zigzag supergraphene-based carbon nanotube

Maebashi Institute of Technology, Hiroaki Niikuni
QMath13

1 Introduction

Fig. 1 Allotropes of Carbon [Enyashin and Ivanovskii, 2011].
(1) graphene (2),(3) pentaheptites (4) haecklites (5),(6) graphyne (10) supergraphene (12),(13) squarographene

Fig. 2 graphene (left) and supergraphene (right)

Carbyne (Allotropes of Carbon) A Chain of Carbons

- $\cdots \cdots-C \equiv C-C \equiv C-C \equiv C-C \equiv C-\cdots \cdots$.
- $\cdots \cdots \cdot=C=C=C=C=C=C=C=C=\cdots \cdots$.

Fig. 3 ©Yakobson, et al. (2013)

Results of Yakobson's reseach group in Rice University:

- A carbyne has an extreme tensile stiffness: It is stiffer by a facor of two than graphene and carbon nanotubes.
- A carbyne is stronger than any other known material.

The aim of this talk is to examine the spectrum of periodic Schrödinger operators on a zigzag supergraphene-based carbon nanotube.

Fig. 4 a standard zigzag carbon nanotube(Left) and a zigzag supergraphene-based carbon nanotube Γ^{N} (Right).

Definition 1.1. Let $\mathbb{J}=\{1,2,3, \ldots, 9\}$. For a fixed number $N \in \mathbb{N}$, we put $\mathbb{Z}_{N}=\mathbb{Z} /(N \mathbb{Z})=\{0,1,2, \ldots, N-1\}$. For each $\omega=(n, j, k) \in \mathcal{Z}:=\mathbb{Z} \times \mathbb{J} \times \mathbb{Z}_{N}$, we define Γ_{ω} as in the figure in the next slide.

Fig. 5 The picture of $\Gamma_{n, j, k}$.

Taking the union $\Gamma^{N}:=\cup_{\omega \in \mathcal{Z}} \Gamma_{\omega}$, we consider the Hilbert space $\mathcal{H}_{N}:=L^{2}\left(\Gamma^{N}\right)=\oplus_{\omega \in \mathcal{Z}} L^{2}\left(\Gamma_{\omega}\right)=\oplus_{\omega \in \mathcal{Z}} L^{2}(0,1)$. For a real-valued function $q \in L^{2}(0,1)$, we consider a Schrödinger operator defined as

$$
\left(H f_{\omega}\right)(x)=-f_{\omega}^{\prime \prime}(x)+q(x) f_{\omega}(x), \quad x \in(0,1) \simeq \Gamma_{\omega}^{\circ}, \quad \omega \in \mathcal{Z},
$$

Dom(H)

$$
\begin{align*}
& \bigoplus_{\omega \in \mathcal{Z}}\left(-f_{\omega}^{\prime \prime}+q f_{\omega}\right) \in L^{2}\left(\Gamma^{N}\right), \\
& f_{n, 1, k}(1)=f_{n, 2, k}(0), \quad f_{n, k}^{\prime}(1)=f_{n, 2, k}^{\prime}(0), \\
& f_{n, 2, k}(1)=f_{n, 3, k}(0), \quad f_{n, 2, k}^{\prime}(1)=f_{n, 3, k}^{\prime}(0), \\
& f_{n, 3, k}(1)=f_{n, 4}(0)=f_{n, k, k-1}(0), \\
& -f_{n, 3, k}^{\prime}(1)+f_{n, 4, k}^{\prime}(0)+f_{n, 7, k-1}^{\prime}(0)=0, \\
& f_{n, 4, k}^{\prime}(1)=f_{n, 5, k}^{\prime}(0), \quad f_{n, k, k}^{\prime}(1)=f_{n, 5, k}^{\prime}(0), \\
& f_{n, 5, k}(1)=f_{n, 6, k}(0), \quad f_{n, 5, k}^{\prime}(1)=f_{n, 6, k}^{\prime}(0), \\
& f_{n, 6, k}^{\prime}(1)=f_{n, 9, k}(1)=f_{n+1,1, k}^{\prime}(0), \\
& -f_{n, 6, k}^{\prime}(1)-f_{n, 9, k}^{\prime}(1)+f_{n+1,1, k}^{\prime}(0)=0, \\
& f_{n, 7, k}^{\prime}(1)=f_{n, 8, k}^{\prime}(0), \quad f_{n, 7, k}^{\prime}(1)=f_{n, 8, k}^{\prime}(0), \\
& f_{n, 8, k}^{\prime}(1)=f_{n, 9, k}(0), \quad f_{n, 8, k}^{\prime}(1)=f_{n, 9, k}^{\prime}(0) \tag{0}\\
& \text { for } n \in \mathbb{Z} \text { and } k \in \mathbb{Z}_{N}
\end{align*}
$$

Definition 1.2. We call Γ^{1} a degenerate zigzag supergraphene-based carbon nanotube.

For convenience, we abbreviate $\Gamma_{n, j, 1}$ as $\Gamma_{n, j}$ for each $(n, j) \in \mathcal{Z}_{1}:=\mathbb{Z} \times \mathbb{J}$.

Fig. 6 A degenerate zigzag supergraphene-based CNT Γ^{1}.

For a fixed $N \in \mathbb{N}$, we put $s=e^{i \frac{2 \pi}{N}}$. For $k=1,2, \ldots, N$, we consider the operator H_{k} in $\mathcal{H}_{1}:=L^{2}\left(\Gamma^{1}\right)$ defined as $\left(H_{k} f_{n, j}\right)(x)=-u_{n, j}^{\prime \prime}(x)+q(x) u_{n, j}(x), \quad x \in(0,1) \simeq \Gamma_{n, j}^{\circ}, \quad(n, j) \in \mathcal{Z}_{1}$,
$\operatorname{Dom}\left(H_{k}\right)$
$=\left\{\begin{array}{l}\bigoplus_{(n, j) \in \mathcal{Z}_{1}} u_{n, j} \in \mathcal{H}_{1}\end{array}\right.$

$$
\begin{aligned}
& \bigoplus_{(n, j) \in \mathcal{Z}_{1}}\left(-u_{n, j}^{\prime \prime}+q u_{n, j}\right) \in L^{2}\left(\Gamma^{1}\right), \\
& u_{n, 1}(1)=u_{n, 2}(0), \quad u_{n, 1}^{\prime}(1)=u_{n, 2}^{\prime}(0), \\
& u_{n, 2}(1)=u_{n, 3}(0), \quad u_{n, 2}^{\prime}(1)=u_{n, 3}^{\prime}(0), \\
& u_{n, 3}(1)=u_{n, 4}(0)=s^{k} u_{n, 7}(0), \\
& -u_{n, 3}^{\prime}(1)+u_{n, 4}^{\prime}(0)+s^{k} u_{n, 7}^{\prime}(0)=0, \\
& u_{n, 4}(1)=u_{n, 5}(0), \quad u_{n, 4}^{\prime}(1)=u_{n, 5}^{\prime}(0), \\
& u_{n, 5}(1)=u_{n, 6}(0), \quad u_{n, 5}^{\prime}(1)=u_{n, 6}^{\prime}(0), \\
& u_{n, 6}(1)=u_{n, 9}(1)=u_{n+1,1}(0), \\
& -u_{n, 6}^{\prime}(1)-u_{n, 9}^{\prime}(1)+u_{n+1,1}^{\prime}(0)=0, \\
& u_{n, 7}(1)=u_{n, 8}(0), \quad u_{n, 7}^{\prime}(1)=u_{n, 8}^{\prime}(0), \\
& u_{n, 8}(1)=u_{n, 9}(0), \quad u_{n, 8}^{\prime}(1)=u_{n, 9}^{\prime}(0) \\
& \text { for } n \in \mathbb{Z}
\end{aligned}
$$

- Utilizing the same method as [Korotyaev and Lobanov, '07], we obtain

$$
\sigma(H)=\cup_{k=1}^{N} \sigma\left(H_{k}\right) .
$$

Thus, it is sufficient to examine $\sigma\left(H_{k}\right)$ in order to examine $\sigma(H)$.

- In order to examine $\sigma\left(H_{k}\right)$, we recall the spectral theory for the corresponding Hill operator

$$
L:=-d^{2} / d x^{2}+q
$$

in $L^{2}(\mathbb{R})$, where the real valued function $q \in L^{2}(0,1)$, appearing as the potential of H, is extended to the 1 -periodic function on \mathbb{R}.

Review and Notation (Spectral Theory for the Hill operator) For $\lambda \in \mathbb{C}$, let $\theta(x, \lambda)$ and $\varphi(x, \lambda)$ be the solutions to the Schrödinger equation

$$
\begin{equation*}
-y^{\prime \prime}(x, \lambda)+q(x) y(x, \lambda)=\lambda y(x, \lambda), \quad x \in \mathbb{R}, \tag{1}
\end{equation*}
$$

as well as the initial conditions $\theta(0, \lambda)=1, \theta^{\prime}(0, \lambda)=0$ and $\varphi(0, \lambda)=0, \varphi^{\prime}(0, \lambda)=1$, respectively.
(I) Since $\theta(x, \lambda), \theta^{\prime}(x, \lambda), \varphi(x, \lambda), \varphi^{\prime}(x, \lambda)$ are entire in $\lambda \in \mathbb{C}$, the Lyapunov function

$$
\Delta(\lambda):=\frac{\theta(1, \lambda)+\varphi^{\prime}(1, \lambda)}{2}
$$

is also entire in $\lambda \in \mathbb{C}$.

(II) It is known as the Floquet-Bloch theory that the spectrum of L is characterized by $\Delta(\lambda)$ as

$$
\sigma(L)=\sigma_{a c}(L)=\{\lambda \in \mathbb{R}|\quad| \Delta(\lambda) \mid \leq 1\}=\bigcup_{j \in \mathbb{N}}\left[\lambda_{2 j-2}, \lambda_{2 j-1}\right],
$$

where $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$ are zeroes of $\Delta(\lambda) \pm 1$ and are labeled in increasing order.
(III) The zeroes of $\Delta(\lambda) \pm 1$ satisfy the inequality

$$
\lambda_{0}<\lambda_{1} \leq \lambda_{2}<\lambda_{3} \leq \lambda_{4}<\ldots
$$

(IV) For $j \in \mathbb{N}$, the interval $B_{j}:=\left[\lambda_{2 j-2}, \lambda_{2 j-1}\right]$ is called the j th band of $\sigma(L)$, counted from the bottom. Two consecutive bands B_{j} and B_{j+1} are separated by $G_{j}:=\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$, which is called the j th gap of $\sigma(L)$.
(V) Let $\sigma_{D}(L):=\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be the Dirichlet spectrum, namely, the spectrum of the eigenvalue problem $-y^{\prime \prime}+q y=\lambda y$ with $y(0)=y(1)=0$. Recall $\mu_{n} \in\left[\lambda_{2 n-1}, \lambda_{2 n}\right]$ for each $n \in \mathbb{N}$.
(VI) $\sigma_{1 / 2}(L):=\left\{\lambda \in \mathbb{R} \left\lvert\, \Delta=\frac{1}{2}\right.\right\}$. $\sigma_{-1 / 2}(L):=\left\{\lambda \in \mathbb{R} \left\lvert\, \Delta=-\frac{1}{2}\right.\right\}$.
$\sigma_{ \pm 1 / 2}(L):=\sigma_{1 / 2}(L) \cup \sigma_{-1 / 2}(L)$.

$2 \sigma_{\infty}\left(H_{k}\right)$ and Discriminants of $\sigma_{a c}\left(H_{k}\right)$

We put $\Delta_{-}=\frac{\theta(1, \lambda)-\varphi^{\prime}(1, \lambda)}{2}$.

- $\sigma_{\infty}(H)$; the set of eigenvalues of H with infinite multiplicities
- $\sigma_{a c}(H)$; the absolutely continuous spectrum of H.

If there exists some $\ell \in \mathbb{N}$ such that $(N, k)=(2 \ell, \ell)$, then we define

$$
\begin{aligned}
& D(\ell, \lambda)=D\left(\frac{N}{2}, \lambda\right) \\
= & 144 \Delta^{6}-\left(216+16 \Delta_{-}^{2}\right) \Delta^{4}+\left(81+8 \Delta_{-}^{2}\right) \Delta^{2}-\left(1+\Delta_{-}^{2}\right)
\end{aligned}
$$

and $\sigma_{\ell, 0}:=\{\lambda \in \mathbb{R} \mid D(\ell, \lambda)=0\}$.

If $(N, k) \neq(2 \ell, \ell)$ for any $\ell \in \mathbb{N}$, then we define

$$
\begin{align*}
D(k, \lambda)= & \frac{1}{4 \cos \frac{\pi k}{N}}\left\{144 \Delta^{6}-\left(216+16 \Delta_{-}^{2}\right) \Delta^{4}\right. \\
& \left.+\left(81+8 \Delta_{-}^{2}\right) \Delta^{2}-\left(3+s^{k}+s^{-k}+\Delta_{-}^{2}\right)\right\} . \tag{2}
\end{align*}
$$

For $k=1,2, \ldots, N$, we notice that $\cos \frac{\pi k}{N}=0$ is equivalent to $k=\frac{N}{2}$. Thus, (2) is well-defined.
We have the followings:

Theorem 2.1. For a fixed $\ell \in \mathbb{N}$, we obtain the followings: (i) If $N=2 \ell-1$, then we have $\sigma\left(H_{k}\right)=\sigma_{\infty}\left(H_{k}\right) \cup \sigma_{a c}\left(H_{k}\right)$ for $k=1,2, \ldots, N$, where

$$
\sigma_{\infty}\left(H_{k}\right)=\sigma_{ \pm 1 / 2}(L) \cup \sigma_{D}(L)
$$

and

$$
\sigma_{a c}\left(H_{k}\right)=\{\lambda \in \mathbb{R}| | D(k, \lambda) \mid \leq 1\} .
$$

(ii) If $N=2 \ell$, then we have $\sigma\left(H_{k}\right)=\sigma_{\infty}\left(H_{k}\right) \cup \sigma_{a c}\left(H_{k}\right)$ for $k=1,2, \ldots, N$, where

$$
\begin{aligned}
& \sigma_{\infty}\left(H_{k}\right) \\
= & \begin{cases}\sigma_{ \pm 1 / 2}(L) \cup \sigma_{D}(L) & \text { if } k=\{1, \ldots, N\} \backslash\{N / 2\}, \\
\sigma_{ \pm 1 / 2}(L) \cup \sigma_{D}(L) \cup \sigma_{\ell, 0} & \text { if } k=N / 2,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma_{a c}\left(H_{k}\right) \\
= & \begin{cases}\{\lambda \in \mathbb{R}||D(k, \lambda)| \leq 1\} & \text { if } k \in\{1, \ldots, N\} \backslash\{N / 2\}, \\
\emptyset & \text { if } k=N / 2 .\end{cases}
\end{aligned}
$$

Abbreviate $\theta(1, \lambda), \theta^{\prime}(1, \lambda), \varphi(1, \lambda), \varphi^{\prime}(1, \lambda)$ to $\theta_{1}, \theta_{1}^{\prime}, \varphi_{1}, \varphi_{1}^{\prime}$.

Lemma 2.2. For a fixed $N \in \mathbb{N}$, we have $\sigma_{1 / 2}(L) \cup \sigma_{-1 / 2}(L) \subset \sigma_{\infty}\left(H_{k}\right)$ for $k=1,2, \ldots, N$.

Proof. (I) We show $\sigma_{1 / 2}(L) \subset \sigma_{\infty}\left(H_{k}\right)$. Pick a $\lambda \in \sigma_{1 / 2}(L)$, arbitrarily. We put $v_{1}(x, \lambda)=\varphi_{1} \theta(x, \lambda)+\varphi_{1}^{\prime} \varphi(x, \lambda)$ and $v_{2}(x, \lambda)=\varphi_{1} \theta(x, \lambda)-\theta_{1} \varphi(x, \lambda)$.
(a) Assume that $k=0$. Then, we define

$$
\begin{aligned}
& u_{0,4}^{(0)}(x, \lambda)=\varphi(x, \lambda), \quad u_{0,5}^{(0)}(x, \lambda)=v_{1}(x, \lambda) \\
& u_{0,6}^{(0)}(x, \lambda)=v_{2}(x, \lambda), \quad u_{0,7}^{(0)}(x, \lambda)=-\varphi(x, \lambda) \\
& u_{0,8}^{(0)}(x, \lambda)=-v_{1}(x, \lambda), \quad u_{0,9}^{(0)}(x, \lambda)=-v_{2}(x, \lambda)
\end{aligned}
$$

and $u_{n, j}^{(0)}(x, \lambda)=0$ for
$(n, j) \neq(0,4),(0,5),(0,6),(0,7),(0,8),(0,9)$.

Furthermore, we define $u^{(n)}=\left\{u_{m-n, j}^{(0)}\right\}_{(m, j) \in \mathcal{Z}_{1}}$. Then, we can directly check $\left\{u^{(n)}\right\}_{n \in \mathbb{Z}} \subset \operatorname{Dom}\left(H_{0}\right)$ and $H_{0} u^{(n)}=\lambda u^{(n)}$ for any $n \in \mathbb{Z}$. Thus, we see that $\lambda \in \sigma_{\infty}\left(H_{0}\right)$. Hence, we have $\sigma_{1 / 2}(L) \subset \sigma_{\infty}\left(H_{0}\right)$.

(b) Assume that $k=1,2, \ldots, N-1$. Then, we put $\alpha_{k}=-1+s^{-k}, \beta_{k}=\frac{1-s^{-k}}{1-s^{k}}, \gamma_{k}=-\frac{1-s^{-k}}{1-s^{k}}$,

$$
\begin{aligned}
& u_{0,4}^{(0)}(x, \lambda)=\varphi(x, \lambda), \quad u_{0,5}^{(0)}(x, \lambda)=v_{1}(x, \lambda), \\
& u_{0,6}^{(0)}(x, \lambda)=v_{2}(x, \lambda), \quad u_{0,7}^{(0)}(x, \lambda)=-s^{-k} \varphi(x, \lambda), \\
& u_{0,8}^{(0)}(x, \lambda)=-s^{-k} v_{1}(x, \lambda), \quad u_{0,9}^{(0)}(x, \lambda)=-s^{-k} v_{2}(x, \lambda), \\
& u_{1,1}(x, \lambda)=\alpha_{k} \varphi(x, \lambda), \quad u_{1,2}(x, \lambda)=\alpha_{k} v_{1}(x, \lambda), \\
& u_{1,3}(x, \lambda)=\alpha_{k} v_{2}(x, \lambda), \quad u_{1,4}(x, \lambda)=\beta_{k} \varphi(x, \lambda), \\
& u_{1,5}(x, \lambda)=\beta_{k} v_{1}(x, \lambda), \quad u_{1,6}(x, \lambda)=\beta_{k} v_{2}(x, \lambda), \\
& u_{1,7}(x, \lambda)=\gamma_{k} \varphi(x, \lambda), \quad u_{1,8}(x, \lambda)=\gamma_{k} v_{1}(x, \lambda), \\
& u_{1,9}(x, \lambda)=\gamma_{k} v_{2}(x, \lambda) .
\end{aligned}
$$

If $n \neq 1$ or $(n, j) \neq(0,4),(0,5),(0,6)$ is valid, then we define
$u_{n, j}^{(0)}(x, \lambda)=0$. Then, for any $n \in \mathbb{Z}$, we see that $u^{(n)}:=\left\{u_{m-n, j}^{(0)}\right\}_{(m, j) \in \mathcal{Z}_{1}}$ is an eigenvalue of H_{k}. So, we obtain $\sigma_{1 / 2}(L) \subset \sigma_{\infty}\left(H_{k}\right)$.

In a similar way, we can construct infinite many eigenfunctions for $\lambda \in \sigma_{-1 / 2}(L)$.

Lemma 2.3. For a fixed $N \in \mathbb{N}$, we have $\sigma_{D}(L) \subset \sigma_{\infty}\left(H_{k}\right)$ for $k=1,2, \ldots, N$.

A direct integral decomposition for H_{k}
We examine $\sigma\left(H_{k}\right) \backslash\left(\sigma_{ \pm 1 / 2}(L) \cup \sigma_{D}(L)\right)$.
For $\mu \in[0,2 \pi)$, we define the Hilbert space
$\mathcal{H}_{\mu}=\oplus_{j=1}^{9} L^{2}\left(\Gamma_{0, j}\right)$. Prepare the Hilbert space

$$
\mathcal{H}=\int_{[0,2 \pi)}^{\oplus} \mathcal{H}_{\mu} \frac{d \mu}{2 \pi}=L^{2}\left([0,2 \pi), \mathcal{H}_{\mu}, \frac{d \mu}{2 \pi}\right)
$$

and the unitary operator $U: L^{2}\left(\Gamma^{1}\right) \rightarrow \mathcal{H}$ defined as

$$
(U f)(x, \mu)=\sum_{p \in \mathbb{Z}} e^{i p \mu} f(x-p)
$$

for $f=\left(f_{n}\right)_{n \in \mathbb{Z}}=\left(f_{n, j}\right)_{(n, j) \in \mathcal{Z}_{1}} \in L^{2}(\Gamma)$. A fiber operator $H_{k}(\mu)$ in \mathcal{H}_{μ} for H_{k} is defined as follows:

$\left(H_{k}(\mu) f_{j}\right)(x)=-f_{j}^{\prime \prime}(x)+q(x) f_{j}(x), \quad x \in(0,1) \simeq \Gamma_{0, j}^{\circ}, \quad j \in \mathbb{J}$,

Then, we obtain a direct integral representation of H_{k} like

$$
U H_{k} U^{-1}=\int_{[0,2 \pi)}^{\oplus} H_{k}(\mu) \frac{d \mu}{2 \pi} .
$$

- $\left\{E_{n}(\mu)\right\}_{n \in \mathbb{N}}$; the sequence of the eigenvalues of $H_{k}(\mu)$
- \mathcal{N}; the set of natural numbers n such that $E_{n}(\mu)$ does depend on $\mu \in[0,2 \pi)$.
- $\sigma\left(H_{k}\right)=\sigma_{\infty}\left(H_{k}\right) \cup \sigma_{a c}\left(H_{k}\right)$, where

$$
\sigma_{\infty}\left(H_{k}\right)=\bigcup_{n \in \mathcal{N}^{c}}\left\{E_{n}(\mu)\right\}
$$

and

$$
\sigma_{a c}\left(H_{k}\right)=\bigcup_{n \in \mathcal{N}} \bigcup_{\mu \in[0,2 \pi)}\left\{E_{n}(\mu)\right\} .
$$

Proof of Theorem 2.1. We pick $\lambda \notin \sigma_{ \pm 1 / 2}(L) \cup \sigma_{D}(L)$, arbitrarily. For this λ, we consider the characteristic equation $H_{k}(\mu) f=\lambda f$ for $0 \not \equiv f=\left(f_{j}\right)_{j=1}^{9} \in \operatorname{Dom}\left(H_{k}(\mu)\right)$. Namely, we consider the following system:

$$
\begin{align*}
& -f_{j}^{\prime \prime}(x)+q(x) f_{j}(x)=\lambda f_{j}(x), \quad x \in(0,1) \simeq \Gamma_{0, j}^{\circ}, \quad j \in \mathbb{J}, \tag{3}\\
& f_{1}(1)=f_{2}(0), \quad f_{2}(1)=f_{3}(0), \quad f_{4}(1)=f_{5}(0), \tag{4}\\
& f_{5}(1)=f_{6}(0), \quad f_{7}(1)=f_{8}(0), \quad f_{8}(1)=f_{9}(0), \tag{5}\\
& f_{3}(1)=f_{4}(0)=s^{k} f_{7}(0), \quad f_{6}(1)=f_{9}(1)=e^{i \mu} f_{1}(0), \tag{6}\\
& f_{1}^{\prime}(1)=f_{2}^{\prime}(0), \quad f_{2}^{\prime}(1)=f_{3}^{\prime}(0), \quad f_{4}^{\prime}(1)=f_{5}^{\prime}(0), \tag{7}\\
& f_{5}^{\prime}(1)=f_{6}^{\prime}(0), \quad f_{7}^{\prime}(1)=f_{8}^{\prime}(0), \quad f_{8}^{\prime}(1)=f_{9}^{\prime}(0), \tag{8}\\
& -f_{3}^{\prime}(1)+f_{4}^{\prime}(0)+s^{k} f_{7}^{\prime}(0)=0,-f_{6}^{\prime}(1)-f_{9}^{\prime}(1)+e^{i \mu} f_{1}^{\prime}(0)=0 .(9) \\
& \text { (6) }
\end{align*}
$$

We first solve (3). It follows $\varphi_{1}=\varphi(1, \lambda) \neq 0$ by $\lambda \notin \sigma_{D}(L)$. Thus, any solution to $-f^{\prime \prime}+q f=\lambda f$ is given as

$$
\begin{equation*}
f(x, \lambda)=\theta(x, \lambda) f(0, \lambda)+\frac{\varphi(x, \lambda)}{\varphi_{1}}\left(f(1, \lambda)-\theta_{1} f(0, \lambda)\right) \tag{10}
\end{equation*}
$$

on $[0,1]$ for $\lambda \notin \sigma_{D}(L)$. Let us put $X_{1}=f_{1}(0), X_{2}=f_{2}(0)$, $X_{3}=f_{3}(0), X_{4}=f_{4}(0), X_{5}=f_{5}(0), X_{6}=f_{6}(0)$, $X_{7}=f_{8}(0), X_{8}=f_{9}(0)$.

Putting $w(x, \lambda)=\theta(x, \lambda)-\frac{\theta(1, \lambda)}{\varphi(1, \lambda)} \varphi(x, \lambda)$, we have

$$
\begin{aligned}
& f_{1}(x, \lambda)=w(x, \lambda) X_{1}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{2}, \quad f_{2}(x, \lambda)=w(x, \lambda) X_{2}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{3}, \\
& f_{3}(x, \lambda)=w(x, \lambda) X_{3}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{4}, \quad f_{4}(x, \lambda)=w(x, \lambda) X_{4}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{5}, \\
& f_{5}(x, \lambda)=w(x, \lambda) X_{5}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{6}, \quad f_{6}(x, \lambda)=w(x, \lambda) X_{6}+\frac{\varphi(x, \lambda)}{\varphi_{1}} e^{i \mu} X_{1}, \\
& f_{7}(x, \lambda)=w(x, \lambda) X_{4}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{7}, \quad f_{8}(x, \lambda)=w(x, \lambda) X_{7}+\frac{\varphi(x, \lambda)}{\varphi_{1}} X_{8}, \\
& f_{9}(x, \lambda)=w(x, \lambda) X_{8}+\frac{\varphi(x, \lambda)}{\varphi_{1}} e^{i \mu} X_{1}
\end{aligned}
$$

due to (4), (5), (6) and (10).
Substituting these 9 formulas into (7), (8), (9), we obtain a
system on $\left\{X_{j}\right\}_{j=1}^{8}$ as follows:

$$
\begin{aligned}
& X_{1}-2 \Delta X_{2}+X_{3}=0 \\
& X_{2}-2 \Delta X_{3}+X_{4}=0 \\
& X_{3}-\left(2 \theta_{1}+\varphi_{1}^{\prime}\right) X_{4}+X_{5}+s^{k} X_{7}=0 \\
& X_{4}-2 \Delta X_{5}+X_{6}=0 \\
& e^{i \mu} X_{1}+X_{5}-2 \Delta X_{6}=0 \\
& s^{-k} X_{4}-2 \Delta X_{7}+X_{8}=0 \\
& e^{i \mu} X_{1}+X_{7}-2 \Delta X_{8}=0 \\
& -\left(2 \varphi_{1}^{\prime}+\theta_{1}\right) e^{i \mu} X_{1}+e^{i \mu} X_{2}+X_{6}+X_{8}=0
\end{aligned}
$$

Here, we recall Δ is the discriminant of $\sigma(L): \Delta=\frac{\theta_{1}+\varphi_{1}^{\prime}}{2}$.

Let $M_{k}(\lambda, \mu)$ be the coefficient matrix of the system on $X_{1}, X_{2}, \ldots, X_{8}$:
$\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ e^{i \mu} \\ 0 \\ e^{i \mu} \\ -\left(2 \varphi_{1}^{\prime}+\theta_{1}\right) e^{i \mu}\end{array}\right.$
-2Δ
1
0
0
0
0
0
$e^{i \mu}$
1
-2Δ
1
0
0
0
0
0

$\left.\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -2 \Delta \\ 1\end{array}\right)$

We have a dispersion relation

$$
0=e^{-i \mu} \operatorname{det} M_{k}(\lambda, \mu)
$$

$$
=\left(4 \Delta^{2}-1\right)\left[4 \cos \left(\frac{\pi k}{N}+\mu\right) \cos \frac{\pi k}{N}-144 \Delta^{6}\right.
$$

$$
\left.+\left(216+16 \Delta_{-}^{2}\right) \Delta^{4}-\left(8 \Delta_{-}^{2}+81\right) \Delta^{2}+3+s^{k}+s^{-k}+\Delta_{-}^{2}\right]
$$

Note that $4 \Delta^{2}-1 \neq 0$ for $\lambda \notin \sigma_{ \pm 1 / 2}(L)$. Thus, for $\lambda \notin \sigma_{ \pm 1 / 2}(L) \cup \sigma_{D}(L)$, we see that $\operatorname{det} M_{k}(\lambda, \mu)=0$ is equivalent to

$$
\begin{aligned}
& 4 \cos \left(\frac{\pi k}{N}+\mu\right) \cos \frac{\pi k}{N} \\
= & 144 \Delta^{6}-\left(216+16 \Delta_{-}^{2}\right) \Delta^{4}+\left(8 \Delta_{-}^{2}+81\right) \Delta^{2}-\left(3+s^{k}+s^{-k}+\Delta_{-}^{2}\right) .
\end{aligned}
$$

This gives us a spectral discriminant $D(k, \lambda)$.
We recall

$$
\begin{aligned}
D(k, \lambda)= & \frac{1}{4 \cos \frac{\pi k}{N}}\left\{144 \Delta^{6}-\left(216+16 \Delta_{-}^{2}\right) \Delta^{4}\right. \\
& \left.+\left(81+8 \Delta_{-}^{2}\right) \Delta^{2}-\left(3+s^{k}+s^{-k}+\Delta_{-}^{2}\right)\right\} .
\end{aligned}
$$

3 Absolutely continuous spectrum of H_{k} : Unperturbed case

In the unperturbed case, we obtain a spectral discriminant

$$
\begin{aligned}
& D_{0}(k, \lambda) \\
= & \frac{1}{4 \cos \frac{\pi k}{N}}\left\{144 \cos ^{6} \sqrt{\lambda}-216 \cos ^{4} \sqrt{\lambda}+81 \cos ^{2} \sqrt{\lambda}-\left(3+2 \cos \frac{2 \pi k}{N}\right)\right\}
\end{aligned}
$$

for $k \in\{1,2, \ldots, N\} \backslash\{N / 2\}$.

Fig. 7 The graph of $D_{0}(0, \lambda), \quad D_{0}(1, \lambda), \quad D_{0}(2, \lambda)$, $D_{0}(3, \lambda), D_{0}(4, \lambda), D_{0}(5, \lambda)$ and $\cos \sqrt{\lambda}$ in the case where $N=15$. This picture hinted the results of the following Theorem 4.1. Namely, one can numerically expect that $\lambda_{k, 2 j}^{-}=\lambda_{k, 2 j}^{+}$for $k=\frac{N}{3}$ and $\lambda_{k, 2 j-1}^{-}=\lambda_{k, 2 j-1}^{+}$for $k=0$ in the case where $q \equiv 0$.

4 Main Results

Theorem 4.1. Let $N=2 \ell-1$ or $N=2 \ell$ for a fixed $\ell \in \mathbb{N}$.
(i) For $k=0,1,2, \ldots, N$, we have $\sigma_{a c}\left(H_{k}\right)=\sigma_{a c}\left(H_{N-k}\right)$. Hence, we have

$$
\sigma_{a c}(H)=\bigcup_{k=0}^{\ell-1} \sigma_{a c}\left(H_{k}\right)
$$

(ii) For $k=0,1,2, \ldots, \ell-1$, there exists real sequence

$$
\lambda_{k, 0}^{+}<\lambda_{k, 1}^{-} \leq \lambda_{k, 1}^{+}<\lambda_{k, 2}^{-} \leq \lambda_{k, 2}^{+}<\cdots<\lambda_{k, n}^{-} \leq \lambda_{k, n}^{+}<\cdots
$$

such that $\sigma_{a c}\left(H_{k}\right)=\bigcup_{j=1}^{\infty}\left[\lambda_{k, j-1}^{+}, \lambda_{k, j}^{-}\right]$.

Namely, $\sigma_{a c}\left(H_{k}\right)$ has the band structure and hence we can define the j th band $\sigma_{k, j}=\left[\lambda_{k, j-1}^{+}, \lambda_{k, j}^{-}\right]$and the j th spectral gap $\gamma_{k, j}=\left(\lambda_{k, j}^{-}, \lambda_{k, j}^{+}\right)$for each $j \in \mathbb{N}$.
(iii)

- For $k \in\{1,2, \ldots, \ell-1\}$, we have $\lambda_{k, 2 j}^{-} \neq \lambda_{k, 2 j}^{+}$for every $j \in \mathbb{N}$.
- For $k \in\{0,1,2, \ldots, \ell-1\} \backslash\left\{\frac{N}{3}\right\}$, we have $\lambda_{k, 2 j-1}^{-} \neq \lambda_{k, 2 j-1}^{+}$.
- If $k \in\{0,1,2, \ldots, \ell-1\} \backslash\left\{0, \frac{N}{3}\right\}$, then every spectral gap of H_{k} is not degenerate, i.e., $\gamma_{k, j} \neq \emptyset$ is valid for all $j \in \mathbb{N}$.

Asymptotic behavior of the spectral band edges
Notation For $q \in L^{2}(0,1), j, n \in \mathbb{N}$ and $p=1,3,5,7,9,11$, we put

$$
\begin{aligned}
q_{0} & =\int_{0}^{1} q(x) d x \\
\hat{q}_{n} & =\int_{0}^{1} q(x) e^{2 \pi i x} d x \\
q_{c, j, n} & =\int_{0}^{1}(1-2 t)^{j} q(t) \cos 2 n \pi t d t, \\
q_{s, j, n} & =\int_{0}^{1}(1-2 t)^{j} q(t) \sin 2 n \pi t d t \\
q_{s, j, n, p} & =\int_{0}^{1}(1-2 t)^{j} q(t) \sin u_{\frac{N}{3}, p+12 n}^{ \pm}(1-2 t) d t
\end{aligned}
$$

Furthermore, for every $n \in \mathbb{N}$, we designate

$$
\begin{aligned}
& u_{0,12 n}^{+}=2 n \pi, \quad u_{0,12 n+2}^{ \pm}=\frac{\pi}{3}+2 n \pi, \quad u_{0,12 n+4}^{ \pm}=\frac{2}{3} \pi+2 n \pi, \\
& u_{0,12 n+6}^{ \pm}=\pi+2 n \pi, \quad u_{0,12 n+8}^{ \pm}=\frac{4}{3} \pi+2 n \pi, \\
& u_{0,12 n+10}^{ \pm}=\frac{5}{3} \pi+2 n \pi, \quad u_{0,12 n+12}^{-}=2 \pi+2 n \pi, \\
& u_{\frac{N}{3}, 12 n+1}^{ \pm}=2 n \pi+\frac{\pi}{6}, \quad u_{\frac{N}{3}, 12 n+3}^{ \pm}=\frac{\pi}{2}+2 n \pi, \\
& u_{\frac{N}{3}, 12 n+5}^{ \pm}=\frac{5}{6} \pi+2 n \pi, \quad u_{\frac{N}{3}, 12 n+7}^{ \pm}=\frac{7}{6} \pi+2 n \pi, \\
& u_{\frac{N}{3}, 12 n+9}^{ \pm}=\frac{3}{2} \pi+2 n \pi, \quad u_{\frac{N}{3}, 12 n+11}^{ \pm}=\frac{11}{6} \pi+2 n \pi .
\end{aligned}
$$

Then, we have the following results for $k=0,1,2, \ldots, \ell-1$.

Theorem 4.2. (i) Edges of even-numbdered spectral gaps

 behave as follows:(a) Let $k=1,2, \ldots, \ell-1$. For $p=1,2,3,4,5,6$, we have

$$
\lambda_{k, 12 n+2 p}^{ \pm}=\left(u_{k, 12 n+2 p}^{ \pm}\right)^{2}+q_{0}+o\left(\frac{1}{n}\right) \quad \text { as } n \rightarrow \infty
$$

(b) Let $k=0$. Then, we have

$$
\begin{aligned}
& \lambda_{0,12 n+p}^{ \pm}=\left(u_{0,12 n+p}^{ \pm}\right)^{2}+q_{0}+o\left(\frac{1}{n}\right) \quad \text { for } p=2,4,8,10 \\
& \lambda_{0,12 n+12}^{ \pm}=4(n+1)^{2} \pi^{2}+q_{0} \pm \sqrt{\left|\hat{q}_{2 n+2}\right|^{2}-\frac{8}{27} q_{s, 0,2 n+2}^{2}+o\left(\frac{1}{n}\right)}+\mathcal{O}\left(\frac{1}{n}\right) \\
& \lambda_{0,12 n+6}^{ \pm}=(2 n+1)^{2} \pi^{2}+q_{0} \pm \sqrt{\left|\hat{q}_{2 n+1}\right|^{2}-\frac{8}{27} q_{s, 0,2 n+1}^{2}+o\left(\frac{1}{n}\right)}+\mathcal{O}\left(\frac{1}{n}\right) \\
& \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

(ii) Edges of odd-numbdered spectral gaps behave as follows:
(a) Let $k \neq \frac{N}{3}$ or q be even. Then, for $p=1,3,5,7,9,11$, we have

$$
\lambda_{k, 12 n+p}^{ \pm}=\left(u_{k, 12 n+p}^{ \pm}\right)^{2}+q_{0}+o\left(\frac{1}{n}\right) \quad \text { as } n \rightarrow \infty .
$$

(b) Let $k=\frac{N}{3}$ and q be not even. For $p=3,9$, we have
$\lambda_{\frac{N}{3}, p+12 n}^{ \pm}=\left(u_{\frac{N}{3}, p+12 n}^{ \pm}\right)^{2}+q_{0} \pm \frac{\sqrt{789}}{108} \sqrt{q_{s, 0, n, p}^{2}+o\left(\frac{1}{n}\right)}+o\left(\frac{1}{n}\right)$
as $n \rightarrow \infty$. For $p=1,5,7,11$, we have
$\lambda_{\frac{N}{3}, p+12 n}^{ \pm}=\left(u_{\frac{N}{3}, 1+12 n}^{+}\right)^{2}+q_{0} \pm \frac{411}{1944} \sqrt{q_{s, 0, n, p}^{2}+o\left(\frac{1}{n}\right)}+o\left(\frac{1}{n}\right)$
as $n \rightarrow \infty$.

Absence of spectral gaps
Theorem 4.3. Let $q \in L^{2}(0,1)$ be real-valued. For each $n \in \mathbb{N}$, we have the followings:
(i) We have $\gamma_{0,12 n-10}=\gamma_{0,12 n-8}=\gamma_{0,12 n-4}=\gamma_{0,12 n-2}=\emptyset$.
(ii) If $\frac{N}{3} \in \mathbb{N}$ and q is even, then we have
$\gamma_{\frac{N}{3}, 12 n-11}=\gamma_{\frac{N}{3}, 12 n-7}=\gamma_{\frac{N}{3}, 12 n-5}=\gamma_{\frac{N}{3}, 12 n-1}=\emptyset$.

5 Proof of Theorems

Discriminant of $z^{3}+p z+q=0: \mathcal{D}=-\left(4 p^{3}+27 q^{2}\right)$

- If $\mathcal{D}>0$, then $z^{3}+p z+q=0$ has three distinct real roots.
- If $\mathcal{D}=0$, then at least 2 roots of $z^{3}+p z+q=0$ coincide, and any root is real.
- If $\mathcal{D}<0$, then $z^{3}+p z+q=0$ has 1 real root and 2 complex conjugate roots.

François Viète's solution to a cubic equation (16th century)
If $\mathcal{D}>0$, then the solutions to $z^{3}+p z+q=0(p<0, q \in \mathbb{R})$ is given by

$$
\alpha_{k}=2 \sqrt{-\frac{p}{3}} \cos \left\{\frac{1}{3} \arccos \left(\frac{3 q}{2 p} \sqrt{\frac{-3}{p}}\right)-\frac{2 \pi}{3} k\right\}, k=0,1,2 .
$$

We examine the asymptotics for zeroes of $D(k, \lambda)=-1$, which is equivalent to

$$
\begin{aligned}
\Delta^{6} & -\left(\frac{3}{2}+\frac{\Delta_{-}^{2}}{9}\right) \Delta^{4}+\left(\frac{9}{16}+\frac{\Delta_{-}^{2}}{18}\right) \Delta^{2} \\
& -\frac{1}{144}\left(3+2 \cos \frac{2 \pi k}{N}-4 \cos \frac{\pi k}{N}+\Delta_{-}^{2}\right)=0
\end{aligned}
$$

Putting $\Delta^{2}=z+\left(\frac{1}{2}+\frac{\Delta_{-}^{2}}{27}\right)$, this is moreover equivalent to
$z^{3}-\left(\frac{3}{16}+\frac{\Delta_{-}^{2}}{18}+\frac{\Delta_{-}^{4}}{243}\right) z-\frac{f_{k}(-1)}{288}-\frac{\Delta_{-}^{2}}{9}\left(\frac{1}{8}+\frac{\Delta_{-}^{2}}{54}+\frac{2 \Delta_{-}^{4}}{2187}\right)=0$.
Here, we put $f_{k}(-1)=8 c_{k}^{2}-8 c_{k}-7$ and $c_{k}=\cos \frac{\pi k}{N}$ for $k=0,1, \ldots, \ell-1$.

We consider its discriminant $D_{k}^{-}=D_{k}^{-}(\lambda)=4 p_{-}^{3}-27 q_{-}^{2}$, where

$$
p_{-}=\frac{3}{16}+\frac{\Delta_{-}^{2}}{18}+\frac{\Delta_{-}^{4}}{243}, q_{-}=\frac{f_{k}(-1)}{288}+\frac{\Delta_{-}^{2}}{9} \underbrace{\left(\frac{1}{8}+\frac{\Delta_{-}^{2}}{54}+\frac{2 \Delta_{-}^{4}}{2187}\right)}_{*} .
$$

Let $q_{\frac{N}{3},-}$ be the q_{-}for $k=\frac{N}{3}$. It follows by straightforward calculations that $D_{\frac{N}{3}}^{-}=\frac{3}{64} \Delta_{-}^{2}+\frac{1}{144} \Delta_{-}^{4}+\frac{1}{2916} \Delta_{-}^{6}$ and

$$
D_{k}^{-}=D_{\frac{N}{3}}^{-}-\frac{1}{48}\left(c_{k}-\frac{1}{2}\right)^{2}\left\{\left(c_{k}-\frac{1}{2}\right)^{2}-\frac{9}{4}+8 \Delta_{-}^{2} \times(\boldsymbol{k})\right\} .
$$

Lemma 5.1. (i) If $k=\frac{N}{3}$ and q is even, then we have $D_{\frac{N}{3}}^{-}=0$.
(ii) Assume that $k \neq \frac{N}{3}$ or q is not even. Then, for $k=0,1, \ldots, \ell-1$, there exists some $\lambda_{0} \in \mathbb{R}$ such that $D_{k}^{-}>0$ for any $\lambda \geq \lambda_{0}$.

In the case of $D_{k}^{-}>0$, we can construct Viéte's solution to $D(k, \lambda)=-1$:

$$
\Delta^{2}=\frac{1}{2}+\frac{1}{2} \cos \left(\frac{1}{3} \arccos \frac{f_{k}(-1)}{9}-\frac{2 \pi m}{3}\right)+\mathcal{O}\left(\Delta_{-}^{2}\right)
$$

as $\lambda \rightarrow+\infty$.

To be continued in ...

Schrödinger operators on a zigzag supergraphene-based carbon nanotube, submitted.

Thank you for your attention.

This work is supported by Grant-in-Aid for Young Scientists (2580085), Japan Society for Promotion of Science.

