How to find the effective size of a non-Weyl graph

Jiří Lipovský ¹

University of Hradec Králové, Faculty of Science jiri.lipovsky@uhk.cz

Atlanta, 10th October 2016

¹Support of project 15-14180Y "Spectral and resonance properties of quantum models" of the Czech Science Foundation is acknowledged.

Description of the model

- set of ordinary differential equations
- graph consists of set of vertices V, set of not oriented edges (both finite ε and infinite ε_∞).
- Hilbert space of the problem

$$\mathcal{H} = \bigoplus_{(j,n)\in I_{\mathcal{L}}} L^2([0,I_{jn}]) \oplus \bigoplus_{j\in I_{\mathcal{C}}} L^2([0,\infty)).$$

states described by columns

$$\psi = (f_{jn} : \mathcal{E}_{jn} \in \mathcal{E}, f_{j\infty} : \mathcal{E}_{j\infty} \in \mathcal{E}_{\infty})^{T}.$$

 the Hamiltonian acting as - d²/dx² + V(x), where V(x) is bounded and supported only on the internal edges – corresponds to the Hamiltonian of a quantum particle for the choice ħ = 1, m = 1/2

Domain of the Hamiltonian

- domain consisting of functions in W^{2,2}(Γ) satisfying coupling conditions at each vertex
- coupling conditions given by

$$(U_{\nu}-I_{\nu})\Psi_{\nu}+i(U_{\nu}+I_{\nu})\Psi_{\nu}'=0.$$

where $\Psi_v = (\psi_1(0), \dots, \psi_d(0))^T$ and $\Psi'_v = (\psi_1(0)', \dots, \psi_d(0)')^T$ are the vectors of limits of functional values and outgoing derivatives where *d* is the number edges emanating from the vertex *v* and U_v is a unitary $d \times d$ matrix

• in particular, standard (Kirchhoff) coupling conditions: $f_i(v) = f_j(v), \sum_{j=1}^d f'_j(v) = 0.$

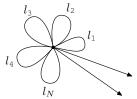
Flower-like model

- description of coupling conditions using one-vertex graphs
- suppose that Γ has N internal and M external edges
- the coupling condition

$$(U-I)\Psi+i(U+I)\Psi'=0$$

describes coupling on the whole graph; U is $(2N + M) \times (2N + M)$ unitary matrix consisting of blocks U_v

- the above equation decouples into conditions for particular vertices
- *U* encodes not only coupling at the vertices, but also the topology of the graph



Effective coupling on a finite graph

- replacing non-compact graph by its compact part
- instead of halflines there are effective coupling matrices
- N internal, M external edges U consists of blocks U_j

$$U = egin{pmatrix} U_1 & U_2 \ U_3 & U_4 \end{pmatrix} \,,$$

where U_1 is $2N \times 2N$ matrix corresponding to coupling between internal edges, etc.

• by a standard procedure (Schur, etc.) one gets an effective coupling matrix

$$\tilde{U}(k) = U_1 - (1-k)U_2[(1-k)U_4 - (k+1)I]^{-1}U_3$$

• coupling condition has the same form only with U replaced by $\tilde{U}(k)$

$$(\tilde{U}(k)-I)\Psi_1+i(\tilde{U}(k)+I)\Psi_1'=0$$

Resolvent resonances

- poles of the meromorphic continuation of the resolvent $(H \lambda id)^{-1}$
- can be obtained by the external complex scaling transformation external components of the wavefunction

$$g_j(x)\mapsto U_{ heta}g_j(x)=\mathrm{e}^{ heta/2}g_j(x\mathrm{e}^{ heta})$$

with a nontrivial imaginary part of θ

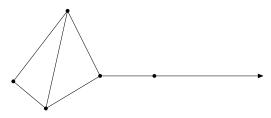
• another definition: $\lambda = k^2$ is a resolvent resonance if there exists a generalized eigenfunction $f \in L^2_{loc}(\Gamma)$, $f \neq 0$ satisfying $-f''(x) = k^2 f(x)$ on all edges of the graph and fulfilling the coupling conditions, which on all external edges behaves as $c_j e^{ikx}$.

Asymptotics of resonances on quantum graphs

- *N*(*R*) number of resolvent resonances in the circle of radius *R* in the *k* plane
- expected behaviour of the counting function

$$N(R) = rac{2\mathrm{vol}(\Gamma)}{\pi}R + \mathcal{O}(1)$$

• trivial example of a graph where this asymptotics is not satisfied



Asymptotics for standard conditions

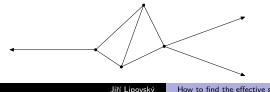
Theorem (Davies, Pushnitski)

Suppose that Γ is the graph with standard (Kirchhoff) coupling conditions at all the vertices. Then

$${\it N}({\it R})=rac{2}{\pi}{\it W}{\it R}+{\it O}(1)\,, \quad {\it as}\,\,{\it R} o\infty,$$

where the coefficient W satisfies $0 \le W \le vol(\Gamma)$. The behaviour is non-Weyl ($0 \le W < vol(\Gamma)$) iff there is a balanced vertex.

- $\operatorname{vol}(\Gamma)$ is sum of lengths of the internal edges
- balanced vertex: number of internal edges is equal to the number of external edges



Pseudo orbit expansion for the resonance condition

- there is a known method for finding the spectrum of a compact graph by the pseudo orbit expansion
- the vertex scattering matrix maps the vector of amplitudes of the incoming waves into a vector of amplitudes of the outgoing waves $\vec{\alpha}_{v}^{\text{out}} = \sigma^{(v)} \vec{\alpha}_{v}^{\text{in}}$
- for a non-compact graph we similarly define effective vertex scattering matrix $\tilde{\sigma}^{(v)}$

Theorem

Let us assume the vertex connecting n internal and m external edges. The effective vertex-scattering matrix is given by

$$ilde{\sigma}(k) = -[(1-k) ilde{U}(k) - (1+k)I_n]^{-1}[(1+k) ilde{U}(k) - (1-k)I_n]$$

In particular, for the standard conditions we have $\tilde{\sigma}(k) = \frac{2}{n+m}J_n - I_n$, where J_n denotes $n \times n$ matrix with all entries equal to one. For a balanced vertex we have $\tilde{\sigma}(k) = \frac{1}{n}J_n - I_n$.

 idea of the pseudo orbit expansion: replacing the compact part of the graph Γ by a oriented graph Γ₂, each edge replaced by two bonds b, b̂

ansatz

$$\begin{split} f_{b_j}(x) &= \alpha_{b_j}^{\text{in}} \mathrm{e}^{-ikx} + \alpha_{b_j}^{\text{out}} \mathrm{e}^{ikx} \,, \\ f_{\hat{b}_j}(x) &= \alpha_{\hat{b}_j}^{\text{in}} \mathrm{e}^{-ikx} + \alpha_{\hat{b}_j}^{\text{out}} \mathrm{e}^{ikx} \end{split}$$

• due to the relation $f_{b_j}(x) = f_{\hat{b}_j}(\ell_j - x)$ we have

$$\alpha^{\rm in}_{b_j} = {\rm e}^{ik\ell_j} \alpha^{\rm out}_{\hat{b}_j}\,, \qquad \alpha^{\rm in}_{\hat{b}_j} = {\rm e}^{ik\ell_j} \alpha^{\rm out}_{b_j}$$

 we define Σ(k) as a block-diagonalizable matrix written in the basis corresponding to

$$\vec{\alpha} = (\alpha_{b_1}, \ldots, \alpha_{b_N}, \alpha_{\hat{b}_1}, \ldots, \alpha_{\hat{b}_N})^{\mathrm{T}}$$

which is block diagonal with blocks $\tilde{\sigma}_{v}(k)$ if transformed to the basis

$$(\alpha_{b_{v_1}1}^{\mathrm{in}},\ldots,\alpha_{b_{v_1}d_1}^{\mathrm{in}},\alpha_{b_{v_2}1}^{\mathrm{in}},\ldots,\alpha_{b_{v_2}d_2}^{\mathrm{in}},\ldots,)^{\mathrm{T}}.$$

$$Q = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix},$$

scattering matrix $S=Q ilde{\Sigma}$ and

$$L = \operatorname{diag} \left(\ell_1, \ldots, \ell_N, \ell_1, \ldots, \ell_N \right)$$

• we obtain

$$\begin{pmatrix} \vec{\alpha}_{b}^{\text{in}} \\ \vec{\alpha}_{b}^{\text{in}} \end{pmatrix} = e^{ikL} \begin{pmatrix} \vec{\alpha}_{b}^{\text{out}} \\ \vec{\alpha}_{b}^{\text{out}} \end{pmatrix} = e^{ikL} Q \begin{pmatrix} \vec{\alpha}_{b}^{\text{out}} \\ \vec{\alpha}_{b}^{\text{out}} \end{pmatrix} = e^{ikL} Q \tilde{\Sigma}(k) \begin{pmatrix} \vec{\alpha}_{b}^{\text{in}} \\ \vec{\alpha}_{b}^{\text{in}} \end{pmatrix}$$

• the resonance condition therefore is

$$\det\left(\mathrm{e}^{ikL}Q\tilde{\Sigma}(k)-I_{2N}\right)=0$$

Effective size for the equilateral graph

Theorem

Let Γ be an equilateral graph (with all internal edges of length ℓ). Then the effective size of this graph is $\frac{\ell}{2}n_{\rm nonzero}$, where $n_{\rm nonzero}$ is the number of nonzero eigenvalues of the matrix $Q\tilde{\Sigma}$. Note that the rank of the matrix cannot be used instead of number of nonzero eigenvalues, because the matrix often has a Jordan form.

idea of the proof

• if there is n_{zero} eigenvalues 0 of $Q\tilde{\Sigma}$, then one has to take n_{zero} entries from the unit matrix to the determinant

- periodic orbit γ is a closed path on Γ_2
- pseudo orbit $\tilde{\gamma}$ is a collection of periodic orbits
- irreducible pseudo orbit $\bar{\gamma}$ is a pseudo orbit, which does not use any directed edge more than once
- we define length of a periodic orbit by ℓ_γ = ∑_{j,b_j∈γ} ℓ_j; the length of pseudo orbit (and hence irreducible pseudo orbit) is the sum of the lengths of the periodic orbits from which it is composed
- we define product of scattering amplitudes for a periodic orbit $\gamma = (b_1, b_2, \ldots, b_n)$ as $A_{\gamma} = S_{b_2b_1}S_{b_3b_2}\ldots S_{b_1b_n}$, where $S_{b_2b_1}$ is the entry of the matrix S in the b_2 -th row and b_1 -th column; for a pseudo orbit we define $A_{\tilde{\gamma}} = \prod_{\gamma_n \in \tilde{\gamma}} A_{\gamma_i}$
- by $m_{\tilde{\gamma}}$ we denote the number of periodic orbits in the pseudo orbit $\tilde{\gamma}$

• reformulation of the theorem on the resonance condition

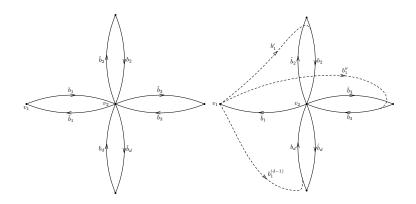
Theorem

The resonance condition is given by the sum over irreducible pseudo orbits

$$\sum_{ar\gamma} (-1)^{m_{ar\gamma}} A_{ar\gamma} \operatorname{e}^{ik\ell_{ar\gamma}} = 0 \, .$$

- in general A_{γ̄} can be energy dependent, but this is not the case for standard coupling.
- idea of the proof: the permutations in the determinant can be represented as product of disjoint cycles

Deleting edges of the graph and "ghost edges"



Main results

Theorem

Let us assume the equilateral graph (lengths ℓ) with standard coupling. Then its effective size is $W \leq N\ell - \frac{\ell}{2}n_{\rm bal} - \frac{\ell}{2}n_{\rm nonneigh}$, where $n_{\rm bal}$ is the number of balanced vertices and $n_{\rm nonneigh}$ is the number of balanced vertices which do not neighbour any other balanced vertex.

- for each balanced vertex one directed edge entering this vertex can be deleted
- in the balanced vertex of the degree d which do not neighbour any other balanced vertex we have d-1 incoming directed bonds and d outgoing directed bonds
- no ghost edge ends in the outgoing edge
- for each balanced vertex one directed edge cannot be used in the irreducible pseudo orbit

Theorem

Let us assume the equilateral graph (lengths ℓ) with standard coupling which contains four balanced vertices which form a square (vertex 1 is connected with 2, 2 with 3, 3 with 4, 4 with 1, but vertex 1 is not connected with 3 and 2 is not connected with 4). Then the effective size is $W \leq (N - 3)\ell$.

- we delete four directed edges of the square
- we use the symmetry of the graph with "ghost edges" and cancellation of contributions of some irreducible pseudo orbits

Thank you for your attention!

Articles on which the talk was based

E.B. Davies, A. Pushnitski: Non-Weyl Resonance Asymptotics for Quantum Graphs, *Analysis and PDE* **4** (2011), no. 5, pp. 729-756. arXiv: 1003.0051.

E.B. Davies, P. Exner, J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions, *J. Phys. A: Math. Theor.* **43** (2010), 474013. arXiv: 1004.0856.

J. Lipovský: On the effective size of a non-Weyl graph, *J. Phys. A: Math. Theor.* **49** (2016), 375202. arXiv: 1507.04176

J. Lipovský: Pseudo orbit expansion for the resonance condition on quantum graphs and the resonance asymptotics, *Acta Physica Polonica A* **128** (2015), p. 968–973. arXiv: 1507.06845

R. Band, J. M. Harrison, and C. H. Joyner: Finite pseudo orbit expansion for spectral quantities of quantum graphs, *J. Phys. A: Math. Theor.* **45** (2012), p. 325204. arXiv: 1205.4214