Eigenvalue Estimates for Quantum Graphs

James Kennedy
University of Stuttgart, Germany

Based on joint work with Gregory Berkolaiko (Texas A\&M), Pavel Kurasov (Stockholm), Gabriela Malenová (KTH Stockholm) and Delio Mugnolo (Hagen)

QMath13: Mathematical Results in Quantum Physics
Georgia Institute of Technology
9 October, 2016

The Laplacian on metric graphs

- Consider a metric graph $\Gamma=(\mathcal{E}(\Gamma), \mathcal{V}(\Gamma)), \mathcal{V}(\Gamma)=\left\{v_{i}\right\}_{i \in I}$, $\mathcal{E}(\Gamma)=\left\{e_{j}\right\}_{j \in J}$, where each edge is identified with an interval, $e_{j} \sim\left(a_{j}, b_{j}\right)$
- We allow multiple parallel edges between vertices and loops, but our edges will be finite
- Take the Laplacian with "natural" boundary conditions on Γ : models heat diffusion on a graph: Laplacian (i.e. second derivative) on each edge-interval; continuity plus Kirchhoff condition at the vertices: flow in equals flow out, i.e. the sum of the normal derivatives is zero
- The vertex conditions are generally encoded in the domain of the operator / associated form

The Laplacian on metric graphs

- Formally

$$
\begin{aligned}
H^{1}(\Gamma):= & \left\{u: \Gamma \rightarrow \mathbb{R}: u_{e_{j}} \in H^{1}\left(e_{j}\right) \sim H^{1}\left(a_{j}, b_{j}\right) \text { for all edges } e_{j}\right. \\
& \text { and if } e_{1} \sim\left(a_{1}, b_{1}\right) \text { and } e_{2} \sim\left(a_{2}, b_{2}\right) \text { share a com- } \\
& \text { mon vertex } \left.b_{1} \sim a_{2}, \text { then } u\left(b_{1}\right)=u\left(a_{2}\right)\right\} \hookrightarrow C(\Gamma)
\end{aligned}
$$

- Define a bilinear form $a: H^{1}(\Gamma) \rightarrow \mathbb{R}$ by

$$
a(u, v):=\int_{\Gamma} \nabla u \cdot \nabla v=\sum_{j} \int_{e_{j}} u_{\mid e_{j}}^{\prime} v_{\mid e_{j}}^{\prime}, \quad u, v \in H^{1}(\Gamma)
$$

- Call the associated operator in $L^{2}(\Gamma)$ the Laplacian with natural boundary conditions or "Kirchhoff Laplacian", $-\Delta_{\text {「 }}$

The eigenvalues of the Laplacian

- Assume Γ is connected and consists of finitely many edges and vertices, and each edge has finite length. Then $-\Delta_{\Gamma}$ has a sequence of eigenvalues

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots \rightarrow \infty
$$

- $\lambda_{0}=0$ with constant functions as eigenfunctions
- Resembles the Neumann Laplacian
- If Γ consists of a single edge connecting two vertices, it is the Neumann Laplacian on an interval
- If Γ consists of a single edge connecting the one vertex (i.e. a loop), it is the Laplace-Beltrami operator on a flat circle

Question ("Spectral geometry")

How do the eigenvalues depend on (properties of) 「?

Spectral geometry on domains/manifolds

- Background: "shape optimisation" on domains or manifolds: which domain optimises an eigenvalue (or combination) among all domains with a given property?
- Classical example: the Theorem of (Rayleigh-) Faber-Krahn: for the Dirichlet Laplacian

$$
\begin{aligned}
-\Delta u & =\lambda u & & \text { in } \Omega \subset \mathbb{R}^{d}, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

with eigenvalues $0<\lambda_{1}(\Omega) \leq \lambda_{2}(\Omega) \leq \ldots$,

Theorem

Let $B \subset \mathbb{R}^{d}$ be a ball with the same volume as Ω. Then $\lambda_{1}(B) \leq \lambda_{1}(\Omega)$ with equality iff Ω is (essentially) a ball.

Why? Classical isoperimetric inequality plus variational characterisation of λ_{1} plus geometry and analysis

Spectral geometry on graphs

We will concentrate (mostly) on λ_{1}, i.e. the spectral gap
Variational characterisation:

$$
\lambda_{1}(\Gamma)=\inf \left\{\frac{\|\nabla u\|_{L^{2}(\Gamma)}^{2}}{\|u\|_{L^{2}(\Gamma)}^{2}}: 0 \neq u \in H^{1}(\Gamma), \int_{\Gamma} u=0\right\}
$$

"Volume" is the total length $L(\Gamma):=\sum_{j}\left|e_{j}\right|=\sum_{j}\left(b_{j}-a_{j}\right)$
Rescaling Γ rescales the eigenvalues accordingly
Theorem (Faber-Krahn-type inequality for graphs; S. Nicaise, 1986; L. Friedlander, 2005; P. Kurasov \& S. Naboko, 2013)

$$
\lambda_{1}(\Gamma) \geq \frac{\pi^{2}}{L^{2}}=\lambda_{1}(\text { line of length } L)
$$

Equality holds iff Γ is a line.
In fact $\lambda_{k}(\Gamma) \geq \frac{\pi^{2}(k+1)^{2}}{4 L^{2}}, k \geq 1$ (Friedlander)

What properties of Γ should $\lambda_{1}(\Gamma)$ depend on?

- Length $L(\Gamma)$
- "Surface area of the boundary": Number of vertices $V(\Gamma)$
- Also number of edges $E(\Gamma)$?
- Diameter: $D(\Gamma)=\sup _{x, y \in \Gamma} \operatorname{dist}(x, y)$ Distance is measured along paths within Γ
- The edge connectivity η
- The Betti number $\beta=E-V+1$
- The Cheeger constant of Γ

How? Basic variational techniques become much more powerful in one dimension!

"Surgery" on graphs

Recall the variational characterisation

$$
\begin{aligned}
\lambda_{1}(\Gamma)= & \inf \left\{\frac{\|\nabla u\|_{L^{2}(\Gamma)}^{2}}{\|u\|_{L^{2}(\Gamma)}^{2}}: 0 \neq u \in H^{1}(\Gamma), \int_{\Gamma} u=0\right\}, \text { where } \\
H^{1}(\Gamma)= & \left\{u: \Gamma \rightarrow \mathbb{R}: u_{\mid e_{j}} \in H^{1}\left(e_{j}\right) \sim H^{1}\left(a_{j}, b_{j}\right) \text { for all edges } e_{j}\right. \\
& \text { and if } e_{1} \sim\left(a_{1}, b_{1}\right) \text { and } e_{2} \sim\left(a_{2}, b_{2}\right) \text { share } \\
& \text { a common vertex } \left.b_{1} \sim a_{2}, \text { then } u\left(b_{1}\right)=u\left(a_{2}\right)\right\} .
\end{aligned}
$$

- Attaching a pendant edge (or graph) to a vertex lowers λ_{1} ("monotonicity" with respect to graph inclusion)
- Lengthening a given edge lowers λ_{1} (essentially the same)
- Creating a new graph by identifying two vertices raises λ_{1}
- Adding a new edge between two vertices is a "global" change; the eigenvalue can increase or decrease
Similar principles even hold for the higher eigenvalues λ_{k}

An upper bound on $\lambda_{1}(\Gamma)$

Theorem (K.-Kurasov-Malenová-Mugnolo, 2015)

Denote by E the number of edges of Γ. Then

$$
\lambda_{1}(\Gamma) \leq \frac{\pi^{2} E^{2}}{L^{2}}
$$

Equality holds iff Γ is equilateral and there is an eigenfunction equal to zero on all vertices of Γ.

- Proof: elementary. Use the surgery principles to reduce to a class of maximisers ("flower graphs", E loops connected to a single vertex) and analyse this class.
- Interesting phenomenon: there are two "types" of maximisers: flower graphs and "pumpkin" (aka "mandarin") graphs
In fact $\lambda_{k}(\Gamma) \leq \frac{\pi^{2} E^{2}(k+1)^{2}}{4 L^{2}}$ if Γ is a "tree" (Rohleder, 2016)

Bounds and non-bounds on $\lambda_{1}(\Gamma)$

- Fix L and V (number of vertices, instead of number of edges). Then $\lambda_{1} \rightarrow \infty$ is possible.
- Fix E and V. Then $\lambda_{1} \rightarrow 0$ and $\lambda_{1} \rightarrow \infty$ are possible. (Rescaling!)

The Cheeger constant

$$
h(\Gamma)=\inf _{S \subset \Gamma \text { open }} \frac{\# \partial S}{\min \left\{|S|,\left|S^{c}\right|\right\}}
$$

Theorem

$$
\frac{h(\Gamma)^{2}}{4} \leq \lambda_{1}(\Gamma) \leq \frac{\pi^{2} E^{2} h(\Gamma)^{2}}{4}
$$

Optimality of the bounds??

What about diameter D ?

Example (K.-Kurasov-Malenová-Mugnolo, 2015)

There exists a sequence of graphs Γ_{n} ("flower dumbbells") with $D\left(\Gamma_{n}\right)=1, V\left(\Gamma_{n}\right)=2$ and $\lambda_{1}\left(\Gamma_{n}\right) \rightarrow 0$.

This can be established via a simple test function argument. Much harder (and less obvious) is

Example (K.-Kurasov-Malenová-Mugnolo, 2015)

There exists a sequence of graphs Γ_{n} ("pumpkin chains") with $D\left(\Gamma_{n}\right)=1$ and $\lambda_{1}\left(\Gamma_{n}\right) \rightarrow \infty$.

Remark

$\lambda_{1}\left(\Gamma_{n}\right) \rightarrow \infty$ is a "global" property of Γ_{n} : attach a fixed pendant edge e of length $\ell>0$ to each Γ_{n} to form a new graph $\tilde{\Gamma}_{n}$, then $\lambda_{1}\left(\tilde{\Gamma}_{n}\right) \leq \pi^{2} / \ell^{2}$ for all n. (Surgery principle: attaching the pendant graph Γ_{n} to e can only lower the eigenvalue of e !)

More bounds on $\lambda_{1}(\Gamma)$?

Theorem (K.-Kurasov-Malenová-Mugnolo, 2015)

If Γ has diameter D, E edges and $V \geq 2$ vertices, then

$$
\lambda_{1}(\Gamma) \leq \frac{\pi^{2}}{D^{2}}(V+1)^{2}
$$

and

$$
\frac{\pi^{2}}{D^{2} E^{2}} \leq \lambda_{1}(\Gamma) \leq \frac{4 \pi^{2} E^{2}}{D^{2}}
$$

with equality in the lower bound if Γ is a path and in the upper bound if Γ is a loop.

More bounds on $\lambda_{1}(\Gamma) ?$

Edge connectivity η is the minimum number of "cuts" needed to make Γ disconnected. Rules:

- Vertices cannot be cut;
- Each edge can only be cut once.

Theorem (Band-Lévy '16, Berkolaiko-K.-Kurasov-Mugnolo, '16)

Suppose $\eta(\Gamma) \geq 2$. Then

$$
\lambda_{1}(\Gamma) \geq \frac{4 \pi^{2}}{L^{2}}
$$

(A refinement of Nicaise et al; the proof is a refinement of Friedlander's rearrangement method.) A further refinement:

Theorem (Berkolaiko-K.-Kurasov-Mugnolo, '16)

Suppose $\ell_{\max }$ denotes the length of the longest edge of Γ. Then

$$
\lambda_{1}(\Gamma) \geq \frac{\pi^{2} \eta^{2}}{\left(L+\ell_{\max }(\eta-2)_{+}\right)^{2}}
$$

Thank you for your attention!

