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The Laplacian on metric graphs

Consider a metric graph Γ = (E(Γ),V(Γ)), V(Γ) = {vi}i∈I ,
E(Γ) = {ej}j∈J , where each edge is identified with an interval,
ej ∼ (aj , bj)

We allow multiple parallel edges between vertices and loops,
but our edges will be finite

Take the Laplacian with “natural” boundary conditions on Γ:
models heat diffusion on a graph:
Laplacian (i.e. second derivative) on each edge-interval;
continuity plus Kirchhoff condition at the vertices: flow in
equals flow out, i.e. the sum of the normal derivatives is zero

The vertex conditions are generally encoded in the domain of
the operator / associated form
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The Laplacian on metric graphs

Formally

H1(Γ) :={u : Γ→ R : u|ej ∈ H1(ej) ∼ H1(aj , bj) for all edges ej

and if e1 ∼ (a1, b1) and e2 ∼ (a2, b2) share a com-

mon vertex b1 ∼ a2, then u(b1) = u(a2)} ↪→ C (Γ)

Define a bilinear form a : H1(Γ)→ R by

a(u, v) :=

∫
Γ
∇u · ∇v =

∑
j

∫
ej

u′|ej v
′
|ej , u, v ∈ H1(Γ)

Call the associated operator in L2(Γ) the Laplacian with
natural boundary conditions or “Kirchhoff Laplacian”, −∆Γ
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The eigenvalues of the Laplacian

Assume Γ is connected and consists of finitely many edges
and vertices, and each edge has finite length. Then −∆Γ has
a sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .→∞

λ0 = 0 with constant functions as eigenfunctions

Resembles the Neumann Laplacian

If Γ consists of a single edge connecting two vertices, it is the
Neumann Laplacian on an interval
If Γ consists of a single edge connecting the one vertex (i.e. a
loop), it is the Laplace-Beltrami operator on a flat circle

Question (“Spectral geometry”)

How do the eigenvalues depend on (properties of) Γ?
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Spectral geometry on domains/manifolds

Background: “shape optimisation” on domains or manifolds:
which domain optimises an eigenvalue (or combination)
among all domains with a given property?

Classical example: the Theorem of (Rayleigh–) Faber–Krahn:
for the Dirichlet Laplacian

−∆u = λu in Ω ⊂ Rd ,

u = 0 on ∂Ω,

with eigenvalues 0 < λ1(Ω) ≤ λ2(Ω) ≤ . . .,

Theorem

Let B ⊂ Rd be a ball with the same volume as Ω. Then
λ1(B) ≤ λ1(Ω) with equality iff Ω is (essentially) a ball.

Why? Classical isoperimetric inequality plus variational
characterisation of λ1 plus geometry and analysis
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Spectral geometry on graphs

We will concentrate (mostly) on λ1, i.e. the spectral gap

Variational characterisation:

λ1(Γ) = inf

{
‖∇u‖2

L2(Γ)

‖u‖2
L2(Γ)

: 0 6= u ∈ H1(Γ),

∫
Γ
u = 0

}

“Volume” is the total length L(Γ) :=
∑

j |ej | =
∑

j(bj − aj)
Rescaling Γ rescales the eigenvalues accordingly

Theorem (Faber–Krahn-type inequality for graphs; S. Nicaise,
1986; L. Friedlander, 2005; P. Kurasov & S. Naboko, 2013)

λ1(Γ) ≥ π2

L2
= λ1(line of length L).

Equality holds iff Γ is a line.

In fact λk(Γ) ≥ π2(k+1)2

4L2 , k ≥ 1 (Friedlander)
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What properties of Γ should λ1(Γ) depend on?

Length L(Γ)

“Surface area of the boundary”: Number of vertices V (Γ)

Also number of edges E (Γ)?

Diameter: D(Γ) = supx ,y∈Γ dist (x , y)
Distance is measured along paths within Γ

The edge connectivity η

The Betti number β = E − V + 1

The Cheeger constant of Γ
. . .

How? Basic variational techniques become much more powerful in
one dimension!
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“Surgery” on graphs

Recall the variational characterisation

λ1(Γ) = inf

{
‖∇u‖2

L2(Γ)

‖u‖2
L2(Γ)

: 0 6= u ∈ H1(Γ),

∫
Γ
u = 0

}
, where

H1(Γ) ={u : Γ→ R : u|ej ∈ H1(ej) ∼ H1(aj , bj) for all edges ej

and if e1 ∼ (a1, b1) and e2 ∼ (a2, b2) share

a common vertex b1 ∼ a2, then u(b1) = u(a2)}.

Attaching a pendant edge (or graph) to a vertex lowers λ1

(“monotonicity” with respect to graph inclusion)

Lengthening a given edge lowers λ1 (essentially the same)

Creating a new graph by identifying two vertices raises λ1

Adding a new edge between two vertices is a “global” change;
the eigenvalue can increase or decrease

Similar principles even hold for the higher eigenvalues λk
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An upper bound on λ1(Γ)

Theorem (K.-Kurasov-Malenová-Mugnolo, 2015)

Denote by E the number of edges of Γ. Then

λ1(Γ) ≤ π2E 2

L2
.

Equality holds iff Γ is equilateral and there is an eigenfunction
equal to zero on all vertices of Γ.

Proof: elementary. Use the surgery principles to reduce to a
class of maximisers (“flower graphs”, E loops connected to a
single vertex) and analyse this class.

Interesting phenomenon: there are two “types” of maximisers:
flower graphs and “pumpkin” (aka “mandarin”) graphs

In fact λk(Γ) ≤ π2E2(k+1)2

4L2 if Γ is a “tree” (Rohleder, 2016)
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Bounds and non-bounds on λ1(Γ)

Fix L and V (number of vertices, instead of number of edges).
Then λ1 →∞ is possible.

Fix E and V . Then λ1 → 0 and λ1 →∞ are possible.
(Rescaling!)

The Cheeger constant

h(Γ) = inf
S⊂Γopen

#∂S

min{|S |, |Sc |}
.

Theorem

h(Γ)2

4
≤ λ1(Γ) ≤ π2E 2h(Γ)2

4
.

Optimality of the bounds??
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What about diameter D?

Example (K.-Kurasov-Malenová-Mugnolo, 2015)

There exists a sequence of graphs Γn (“flower dumbbells”) with
D(Γn) = 1, V (Γn) = 2 and λ1(Γn)→ 0.

This can be established via a simple test function argument. Much
harder (and less obvious) is

Example (K.-Kurasov-Malenová-Mugnolo, 2015)

There exists a sequence of graphs Γn (“pumpkin chains”) with
D(Γn) = 1 and λ1(Γn)→∞.

Remark

λ1(Γn)→∞ is a “global” property of Γn: attach a fixed pendant
edge e of length ` > 0 to each Γn to form a new graph Γ̃n, then
λ1(Γ̃n) ≤ π2/`2 for all n. (Surgery principle: attaching the
pendant graph Γn to e can only lower the eigenvalue of e!)

James Kennedy Eigenvalue Estimates for Quantum Graphs



More bounds on λ1(Γ)?

Theorem (K.-Kurasov-Malenová-Mugnolo, 2015)

If Γ has diameter D, E edges and V ≥ 2 vertices, then

λ1(Γ) ≤ π2

D2
(V + 1)2

and
π2

D2E 2
≤ λ1(Γ) ≤ 4π2E 2

D2
,

with equality in the lower bound if Γ is a path and in the upper
bound if Γ is a loop.
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More bounds on λ1(Γ)?

Edge connectivity η is the minimum number of “cuts” needed to
make Γ disconnected. Rules:

Vertices cannot be cut;
Each edge can only be cut once.

Theorem (Band–Lévy ’16, Berkolaiko-K.-Kurasov-Mugnolo, ’16)

Suppose η(Γ) ≥ 2. Then

λ1(Γ) ≥ 4π2

L2
.

(A refinement of Nicaise et al; the proof is a refinement of
Friedlander’s rearrangement method.) A further refinement:

Theorem (Berkolaiko-K.-Kurasov-Mugnolo, ’16)

Suppose `max denotes the length of the longest edge of Γ. Then

λ1(Γ) ≥ π2η2

(L + `max(η − 2)+)2
.
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Thank you for your attention!
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