n-particle quantum statistics on graphs

Jon Harrison¹, J.P. Keating², J.M. Robbins² and A. Sawicki²

¹Baylor University, ²University of Bristol

 $\mathsf{QMath13}-10/16$

Jon Harrison quantum statistics on graphs

イロト イポト イヨト イヨト

2 Statistics on graphs

Jon Harrison quantum statistics on graphs

イロン イヨン イヨン イヨン

æ

Quantum statistics

Single particle space configuration space X.

Two particle statistics - alternative approaches:

• Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$\psi(x_1, x_2) = \pm \psi(x_2, x_1)$$
 (1)

イロト イポト イヨト イヨト

Bose-Einstein/Fermi-Dirac statistics.

Quantum statistics

Single particle space configuration space X.

Two particle statistics - alternative approaches:

• Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$\psi(x_1, x_2) = \pm \psi(x_2, x_1)$$
 (1)

イロト イポト イヨト イヨト

Bose-Einstein/Fermi-Dirac statistics.

• (Leinaas and Myrheim '77) Treat particles as indistinguishable, $\psi(x_1, x_2) \equiv \psi(x_2, x_1)$. Quantize two particle configuration space.

Bose-Einstein and Fermi-Dirac statistics

Two indistinguishable particles in \mathbb{R}^3 . At constant separation relative coordinate lies on projective plane.

Exchanging particles corresponds to rotating relative coordinate around closed loop p.

p is not contractible but p^2 is contractible. To associate a phase factor $e^{i\theta}$ to p requires $(e^{i\theta})^2 = 1$. Quantizing configuration space with phase π corresponds to Fermi-Dirac statistics and phase 0 to Bose-Einstein statistics.

4 B M 4 B M

Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2 .

- Particles not coincident.
- Relative position coordinate in $\mathbb{R}^2 \setminus \boldsymbol{0}.$
- Exchange paths are closed loops about **0** in relative coordinate.
- Any phase factor $e^{i\theta}$ can be associated with a primitive exchange path.

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

(ロ) (同) (E) (E) (E)

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$

Any single phase θ can be associated to primitive exchange paths – anyon statistics.

・ロト ・回ト ・ヨト ・ヨト

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$

Any single phase θ can be associated to primitive exchange paths – anyon statistics.

*H*₁(*C_n*(ℝ)) = 1 particles cannot be exchanged.

・ロト ・回ト ・ヨト ・ヨト

What happens on a graph where the underlying space has arbitrarily complex topology?

Jon Harrison quantum statistics on graphs

イロト イポト イヨト イヨト

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

< 🗇 🕨

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Two cut

< < >> < <</>

< ∃ >

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Two independent paths joining u and v.

Features of graph statistics

3-connected graphs: statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

イロト イポト イヨト イヨト

Features of graph statistics

3-connected graphs: statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

A planar lattice with a small section that is non-planar is locally planar but has Bose/Fermi statistics.

イロト イポト イヨト イヨト

Features of graph statistics

2-connected graphs: statistics complex but independent of the number of particles.

イロト イヨト イヨト イヨト

э

Features of graph statistics

2-connected graphs: statistics complex but independent of the number of particles.

For example, one could construct a chain of 3-connected non-planar components where particles behave with alternating Bose/Fermi statistics.

Image: A matrix

4 B M 4 B M

Features of graph statistics

1-connected graphs: statistics depend on no. of particles *n*.

イロト イヨト イヨト イヨト

э

Features of graph statistics

1-connected graphs: statistics depend on no. of particles n. Example, star with E edges.

no. of anyon phases

$$egin{pmatrix} \mathsf{n}+\mathsf{E}-2\ \mathsf{E}-1 \end{pmatrix}(\mathsf{E}-2)-egin{pmatrix} \mathsf{n}+\mathsf{E}-2\ \mathsf{E}-2 \end{pmatrix}+1\;.$$

イロン イヨン イヨン イヨン

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< ∃ >

∃ >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

A D > <
 A D >
 A

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

∃ >

< < >> < <</>

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< ∃ >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< ∃ >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

3

-

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< ∃ >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

A D > <
 A D >
 A

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; (1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,2), phase $\phi_{c,1}^1$.

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_Y$.

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,2)$, phase $\phi_{c,1}^1$.

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_Y$.

Let c be a loop. What is the relation between $\phi_{c,1}^{u}$ and $\phi_{c,1}^{v}$?

(a) u and v joined by path disjoint with c.

 $\phi_{c,1}^{u} = \phi_{c,1}^{v}$ as exchange cycles homotopy equivalent.

(b) u and v only joined by paths through c.

Two lasso graphs so $\phi_{c,2} = \phi_{c,1}^{u} + \phi_{Y_1} \& \phi_{c,2} = \phi_{c,1}^{v} + \phi_{Y_2}$. Hence $\phi_{c,1}^{u} - \phi_{c,1}^{v} = \phi_{Y_2} - \phi_{Y_1}$.

・ロト ・四ト ・ヨト ・ヨトー

Let c be a loop. What is the relation between $\phi_{c,1}^{u}$ and $\phi_{c,1}^{v}$?

(a) u and v joined by path disjoint with c.

 $\phi^{u}_{c,1} = \phi^{v}_{c,1}$ as exchange cycles homotopy equivalent.

(b) u and v only joined by paths through c.

Two lasso graphs so $\phi_{c,2} = \phi_{c,1}^{u} + \phi_{Y_1} \& \phi_{c,2} = \phi_{c,1}^{v} + \phi_{Y_2}$. Hence $\phi_{c,1}^{u} - \phi_{c,1}^{v} = \phi_{Y_2} - \phi_{Y_1}$.

• Relations between phases involving *c* encoded in phases ϕ_Y . $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where *A* determined by Y-cycles.

• In (a) we have a \mathcal{B} subgraph & using (b) also $\phi_{Y_1} = \phi_{Y_2}$.

3-connected graphs

The prototypical 3-connected graph is a *wheel* W^k .

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then for some edge $e \in \Gamma$ either $\Gamma \setminus e$ or Γ/e is simple and 3-connected.

- $\Gamma \setminus e$ is Γ with the edge *e* removed.
- Γ/e is Γ with *e* contracted to identify its vertices.

< 🗇 🕨

Lemma

For 3-connected simple graphs all phases $\phi_{\mathbf{Y}}$ are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. Adding an edge: $\Gamma \cup e$

- A 同 ト - A 三 ト - A 三 ト

_emma

For 3-connected simple graphs all phases $\phi_{\mathbf{Y}}$ are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. *Adding an edge:* $\Gamma \cup e$

Using 3-connectedness identify independent paths in Γ to make $\mathcal{B}.$ Then $\phi_{\mathbf{Y}}=\phi_{\mathbf{Y}}.$

イロト イヨト イヨト イヨト

Lemma

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. *Vertex expansion:* Split vertex of degree > 3 into two vertices u and v joined by a new edge e.

イロト イポト イヨト イヨト

Lemma

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. *Vertex expansion:* Split vertex of degree > 3 into two vertices u and v joined by a new edge e.

Using 3-connectedness identify independent paths in Γ to make $\mathcal B.$ Then $\phi_{\mathbf Y}=\phi_{\mathbf Y}.$

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

• For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.

イロト イヨト イヨト イヨト

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

- For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.
- For planar graphs the anyon phase can be introduced by drawing the graph in the plane and integrating the anyon vector potential $\frac{\alpha}{2\pi}\hat{z} \times \frac{r_1 r_2}{|r_1 r_2|^2}$ along the edges of the two-particle graph.

イロン イヨン イヨン イヨン

Classification of graph statistics

Ko & Park (2011)

$$H_1(C_n(G)) = \mathbb{Z}^{N_1(G) + N_2(G) + N_3(G) + \beta_1(G)} \oplus \mathbb{Z}_2^{N'_3(G)}$$
(2)

• $N_1(G)$ sum over one cuts j of N(n, G, j).

$$N(n,G,j) = \binom{n+\mu_j-2}{n-1}(\mu(j)-2) - \binom{n+\mu_j-2}{n} - (\nu_j - \mu_j - 1)$$

 $\mu_j \ \# \text{ components of } G \setminus j.$

- $N_2(G)$ sum over two connected components of G.
- $N_3(G) \#$ 3-connected planar components of G.
- $N'_3(G)$ # 3-connected non-planar components of G.
- $\beta_1(G) \#$ of loops of G.

イロト イポト イヨト イヨト

Summary

- Classification of abelian quantum statistics on graphs by graph theoretic argument.
- Physical insight into dependence of statistics on graph connectivity.
- Interesting new features of graph statistics.
- Are there phenomena associated with new forms of graph statistics e.g. fractional quantum Hall experiment on network?
- JH, JP Keating, JM Robbins and A Sawicki, "n-particle quantum statistics on graphs," Commun. Math. Phys. (2014)
 330 1293–1326 arXiv:1304.5781

JH, JP Keating and JM Robbins, "Quantum statistics on graphs," *Proc. R. Soc. A* (2010) doi:10.1098/rspa.2010.0254 arXiv:1101.1535