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Quantum statistics

Single particle space configuration space X .
Two particle statistics - alternative approaches:

Quantize X×2 and restrict Hilbert space to the symmetric or
anti-symmetric subspace.

ψ(x1, x2) = ±ψ(x2, x1) (1)

Bose-Einstein/Fermi-Dirac statistics.

(Leinaas and Myrheim ‘77)
Treat particles as indistinguishable, ψ(x1, x2) ≡ ψ(x2, x1).
Quantize two particle configuration space.
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Bose-Einstein and Fermi-Dirac statistics

Two indistinguishable particles in R3. At constant separation
relative coordinate lies on projective plane.

Exchanging particles corresponds to rotating relative coordinate
around closed loop p.
p is not contractible but p2 is contractible.
To associate a phase factor eiθ to p requires (eiθ)2 = 1.
Quantizing configuration space with phase π corresponds to
Fermi-Dirac statistics and phase 0 to Bose-Einstein statistics.
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Anyon statistics

Pair of indistinguishable particles in R2.

Particles not coincident.

Relative position coordinate in R2 \ 0.

Exchange paths are closed loops about 0 in relative
coordinate.

Any phase factor eiθ can be associated with a primitive
exchange path.
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Definition

Configuration space of n indistinguishable particles in X ,

Cn(X ) = (X×n −∆n)/Sn

where ∆n = {x1, . . . , xn|xi = xj for some i 6= j}.

1st homology groups of Cn(Rd):

H1(Cn(Rd)) = Z2 for d ≥ 3.
2 abelian irreps. corresponding to Bose-Einstein &
Fermi-Dirac statistics.

H1(Cn(R2)) = Z
Any single phase θ can be associated to primitive exchange
paths – anyon statistics.

H1(Cn(R)) = 1
particles cannot be exchanged.
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What happens on a graph where the
underlying space has arbitrarily complex

topology?
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Graph connectivity

Given a connected graph Γ a k-cut is a set of k vertices whose
removal makes Γ disconnected.

Γ is k-connected if the minimal cut is size k .

Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

u

v

Two cut

Jon Harrison quantum statistics on graphs



Quantum statistics
Statistics on graphs
3-connected graphs

Graph connectivity

Given a connected graph Γ a k-cut is a set of k vertices whose
removal makes Γ disconnected.

Γ is k-connected if the minimal cut is size k .

Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

u

v

Two cut

Jon Harrison quantum statistics on graphs



Quantum statistics
Statistics on graphs
3-connected graphs

Graph connectivity

Given a connected graph Γ a k-cut is a set of k vertices whose
removal makes Γ disconnected.

Γ is k-connected if the minimal cut is size k .

Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

u

v

Two independent paths joining u and v .
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Features of graph statistics

3-connected graphs: statistics only depend on whether the graph
is planar (Anyons) or non-planar (Bosons/Fermions).

A planar lattice with a small section that is non-planar is locally
planar but has Bose/Fermi statistics.
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Features of graph statistics

2-connected graphs: statistics complex but independent of the
number of particles.

F B F B F

For example, one could construct a chain of 3-connected
non-planar components where particles behave with alternating
Bose/Fermi statistics.

Jon Harrison quantum statistics on graphs



Quantum statistics
Statistics on graphs
3-connected graphs

Features of graph statistics

2-connected graphs: statistics complex but independent of the
number of particles.

F B F B F

For example, one could construct a chain of 3-connected
non-planar components where particles behave with alternating
Bose/Fermi statistics.

Jon Harrison quantum statistics on graphs



Quantum statistics
Statistics on graphs
3-connected graphs

Features of graph statistics

1-connected graphs: statistics depend on no. of particles n.

Example, star with E edges.

no. of anyon phases(
n + E − 2

E − 1

)
(E − 2)−

(
n + E − 2

E − 2

)
+ 1 .
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Basic cases

For 2 particles.

1 2

3

(12) (23)

(13)

3

2

4

1

(12)

(13) (23)

(34)

(24)(14)

Exchange of 2 particles
around loop c; one free
phase φc2.

Exchange of 2 particles
at Y-junction; one free
phase φY .

Γ C2(Γ)
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Lasso graph

3

2

4

1

(12)

(13) (23)

(34)

(24)(14)

Identify three 2-particle cycles:

(i) Rotate both particles around loop c ; phase φc,2.

(ii) Exchange particles on Y-subgraph; phase φY .

(iii) Rotate one particle around loop c other particle at vertex 1;
(1, 2)→ (1, 3)→ (1, 4)→ (1, 2), phase φ1

c,1.

Relation from contactable 2-cell φc,2 = φ1
c,1 + φY .
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Let c be a loop. What is the relation between φuc,1 and φvc,1?

(a) u and v joined by path disjoint with c.
φuc,1 = φvc,1 as exchange cycles homotopy equivalent.

(b) u and v only joined by paths through c.
Two lasso graphs so φc,2 = φuc,1 + φY1 & φc,2 = φvc,1 + φY2 .
Hence φuc,1 − φvc,1 = φY2 − φY1 .

Y1

u

Y2

v

(a)

c Y1

u

Y2

v

(b)

c

Relations between phases involving c encoded in phases φY .
H1(C2(Γ)) = Zβ1(Γ) ⊕ A, where A determined by Y-cycles.

In (a) we have a B subgraph & using (b) also φY1 = φY2 .
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3-connected graphs

The prototypical 3-connected graph is a wheel W k .

W 5

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then
for some edge e ∈ Γ either Γ \ e or Γ/e is simple and 3-connected.

Γ \ e is Γ with the edge e removed.

Γ/e is Γ with e contracted to identify its vertices.
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Lemma

For 3-connected simple graphs all phases φY are equal up to a sign.

Sketch proof. The lemma holds on K4 (minimal wheel). By wheel
theorem we need to show that adding an edge or expanding a
vertex any new phases φY are the same as an original phase.
Adding an edge: Γ ∪ e

Γ

e

Using 3-connectedness identify independent paths in Γ to make B.
Then φY = φY .
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Theorem

For a 3-connected simple graph, H1(C2(Γ)) = Zβ1(Γ) ⊕ A, where
A = Z2 for non-planar graphs and A = Z for planar graphs.

Proof.

For K5 and K3,3 every phase φY = 0 or π. By Kuratowski’s
theorem a non-planar graph contains a subgraph which is
isomorphic to K5 or K3,3.

For planar graphs the anyon phase can be introduced by
drawing the graph in the plane and integrating the anyon
vector potential α

2π ẑ × r1−r2
|r1−r2|2 along the edges of the

two-particle graph.
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Classification of graph statistics

Ko & Park (2011)

H1(Cn(G )) = ZN1(G)+N2(G)+N3(G)+β1(G) ⊕ ZN′
3(G)

2 (2)

N1(G ) sum over one cuts j of N(n,G , j).

N(n,G , j) =

(
n + µj − 2

n − 1

)
(µ(j)−2)−

(
n + µj − 2

n

)
− (vj −µj −1)

µj # components of G \ j .

N2(G ) sum over two connected components of G .

N3(G ) # 3-connected planar components of G .

N ′3(G ) # 3-connected non-planar components of G .

β1(G ) # of loops of G .
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Summary

Classification of abelian quantum statistics on graphs by
graph theoretic argument.

Physical insight into dependence of statistics on graph
connectivity.

Interesting new features of graph statistics.

Are there phenomena associated with new forms of graph
statistics - e.g. fractional quantum Hall experiment on
network?

JH, JP Keating, JM Robbins and A Sawicki, “n-particle
quantum statistics on graphs,” Commun. Math. Phys. (2014)
330 1293–1326 arXiv:1304.5781

JH, JP Keating and JM Robbins, “Quantum statistics on
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