Uni-directional quantum graphs

Boris Gutkin

Georgia Tech \& Duisburg-Essen University
Joint work with M. Akila
QMath13: Atlanta, October 2016

Spectral Universality

$$
\left(\Delta+\lambda_{n}\right) \varphi_{n}=0,\left.\quad \varphi_{n}\right|_{\partial \Omega}=0, \quad \varphi_{n} \in L^{2}(\Omega)
$$

- Hallmark of quantum chaos: Level repulsion

Nearest neighbor distr. $p_{\beta}(s) \sim s^{\beta}$

- Chaotic systems fall into $\mathbf{3}$ symmetry classes:
$\beta=1$, GOE: time reversal invariant (TRI)
$\beta=2$, GUE: broken TRI
$\beta=4$, GSE: TRI + half integer spin

Uni-directional Systems

Classical: unidirectional (non-ergodic), but chaotic
Quantum: both directions "weakly" coupled (by dynamical tunneling, diffraction orbits) \Rightarrow

- Quasi-degeneracies
- Anomalous statistics
B.G., J. Phys. A 40, F761 (2007)
B. Dietz, B.G et al., Phys. Rev. E 90, 022903 (2014)

Spectral properties

Collaboration with
the experimental
group of A. Richter
(Darmstadt)

Smooth boundaries:

$$
\delta \lambda_{n} \ll \text { mean level spacing }
$$

In spite TRI, statistics are of GUE type
Non-smooth boundaries: Strong tunneling due to diffraction \Rightarrow
$\delta \lambda_{n} \sim$ mean level spacing
Anomalous spectral statistics

Uni-directional Quantum Graphs

$$
\operatorname{det}(1-S \mathcal{L}(k))=0, \quad S=\left(\begin{array}{cc}
\mathcal{S} & 0 \\
0 & \mathcal{S}^{T}
\end{array}\right)
$$

$\mathcal{L}(k)=\operatorname{diag}\left(e^{i k l_{1}}, \ldots, e^{i k l_{2 B}}\right), l_{i}=l_{i+B}, B=\#$ edges
Spectrum of $S \mathcal{L}(k)$ is doubly degenerate Spectral statistics are of GUE type

Adding back-scatterer

α controls strength of back-scattering
\Longrightarrow Lifting degeneracies
Q. What is the nearest-neighbor distribution $p(s)$ between eigenvalues?

Adding back-scatterer

Half of the spectrum doesn't change: $\left\{\epsilon_{i}\right\}$
Secular equation for other half: $\left\{\lambda_{i}\right\}$

$$
1 / \nu \equiv \cot \alpha=\sum_{m=1}^{B}\left|A_{m}\right|^{2} \cot \left(\frac{\lambda-\epsilon_{m}}{2}\right)
$$

$\left|A_{m}\right|^{2}=$ Amplitude of original eigenstates at $\tilde{\sigma}$
Nearest neighbor distribution: $p(s)=\frac{1}{2}\left(p_{\text {in }}(s)+p_{\text {ex }}(s)\right)$
$p_{\text {in }}(s)$: distribution of $\epsilon_{i}-\lambda_{i}$
$p_{\mathrm{ex}}(s)$: distribution of $\lambda_{i}-\epsilon_{i+1}$

Random Matrix model

RMT assumptions:

$$
\left\{\epsilon_{n}\right\} \sim \text { CUE distributed }
$$

$$
p\left(\left|A_{m}\right|^{2}\right)=N \exp \left(-N\left|A_{m}\right|^{2}\right)
$$

Joint probability:

$$
P\left(\left\{\epsilon_{i}\right\},\left\{\lambda_{j}\right\}\right) \propto\left(\prod_{\substack{i, j=1 \\ i>j}}^{N} 4 \sin \frac{\epsilon_{i}-\epsilon_{j}}{2} \sin \frac{\lambda_{i}-\lambda_{j}}{2}\right) \exp \left(-\frac{N}{2 \nu} \sum_{i=1}^{N}\left(\lambda_{i}-\epsilon_{i}\right)\right) .
$$

I. L. Aleiner et al., Phys. Rev. Lett. 80, 814 (1998)

Gap-Probability

$$
E=\frac{\operatorname{det} F\left(\epsilon_{\min }, \epsilon_{\max } ; \lambda_{\min }, \lambda_{\max }\right)}{\operatorname{det} F(0,0 ; 0,0)}
$$

with the $N \times N$ matrix kernel

$$
\begin{aligned}
F_{k l}= & \int_{-\pi}^{+\pi} d \epsilon \int_{\epsilon}^{+\pi} d \lambda e^{-\frac{N}{2 \nu}(\lambda-\epsilon)} e^{i(k-1) \epsilon-i \frac{N-1}{2} \epsilon} e^{i(l-1) \lambda-i \frac{N-1}{2} \lambda} \\
& \times\left(1-\theta\left(\epsilon-\epsilon_{\min }\right) \theta\left(\epsilon_{\max }-\epsilon\right)\right)\left(1-\theta\left(\lambda-\lambda_{\min }\right) \theta\left(\lambda_{\max }-\lambda\right)\right)
\end{aligned}
$$

Allows to write splitting distribution as derivative

$$
\left.p_{\text {in }}(s) \propto \frac{\partial^{2}}{\partial \epsilon_{\min } \partial \lambda_{\max }} E\left(\epsilon_{\min }, \epsilon_{\max } ; \lambda_{\min }, \lambda_{\max }\right)\right|_{\substack{\epsilon_{\min }=\lambda_{\min }=-s \pi / N \\ \epsilon_{\max }=\lambda_{\max }=+s \pi / N}}
$$

Nearest neighbor distribution

Simple Surmise: Shifted Wigner-Distribution (for $\beta=2$) gives a good approximation to $p_{\text {in }}(s), p_{\text {ex }}(s)$:
$p_{\mathrm{s}}(s, c)=\mathrm{p}_{\beta=2}(s-c) / \mathcal{N}(c), \quad \mathcal{N}(c)=\frac{4}{\pi} c e^{-\frac{4 c^{2}}{\pi}}+\operatorname{erfc}\left(\frac{2 c}{\sqrt{\pi}}\right)$.
For $p_{\text {in }}(s)$ shift c determined by demanding: $p_{\mathrm{s}}(0, c)=R_{2}(0)$
Analytical Results: $p_{\text {in }}(s), p_{\text {ex }}(s)$ versus 2 -point correlator $R_{2}(s)$

Generic position of scatterer

Comparison with Quantum Graphs:

If $\tilde{\sigma}$ sits on "generic" edge \Longrightarrow RMT result holds

Short loop scatterer

$\tilde{\sigma}$ on short cycle (i.e., self-loop) \Longrightarrow No RMT result
Strong scarring of wave-functions on cycle affects $\left|A_{m}\right|^{2}$ distribution.

Scarring of wave-functions

Deviations from Gaussian statistics

Generic edge

Short loop

$$
P\left(\left|\psi_{n}\right|^{2}\right) \neq N \exp \left(-\left|\psi_{n}\right|^{2} N\right)
$$

Transition GUE \rightarrow GOE

Higher Rank perturbations:

a) 2 scatterers
b) 4 scatterers
Dashed line: 1-rank perturbation, Solid line: $p_{\beta=1}(s)$

Only for rank-one perturbation $p(0) \neq 0$, otherwise level repulsion

Breaking unidirectionality \Longrightarrow Fast transition to GOE

Summary

M. Akila, B.G. J. Phys. A 48, 345101

■ Analytic formula for $p(s)$. No level repulsion. Good agreement for generic position of $\tilde{\sigma}$

■ No agreement for $\tilde{\sigma}$ positioned on short loops \Longrightarrow Strong scarring

■ Fast approach to GOE as \# of scatterers increases
\square "Semiclassical" derivation of $R_{2}(s)$ through periodic orbit correlations \Longleftrightarrow Scarring

Another interpretation

Chain of unidirectional graphs Γ

Band structure

