Uni-directional quantum graphs

Boris Gutkin

Georgia Tech & Duisburg-Essen University Joint work with **M. Akila**

QMath13: Atlanta, October 2016

Spectral Universality

$$(\Delta + \lambda_n) \varphi_n = 0, \qquad \varphi_n|_{\partial\Omega} = 0, \quad \varphi_n \in L^2(\Omega)$$

- Hallmark of quantum chaos: Level repulsion Nearest neighbor distr. $p_{\beta}(s) \sim s^{\beta}$
- Chaotic systems fall into **3 symmetry classes**:
- $\beta = 1$, GOE: time reversal invariant (TRI)
- $\beta = 2$, GUE: broken TRI
- $\beta=4,$ GSE: TRI + half integer spin

Uni-directional Systems

Classical: unidirectional (non-ergodic), but chaotic

Quantum: both directions "weakly" coupled (by dynamical tunneling, diffraction orbits) \Rightarrow

– Quasi-degeneracies

Anomalous statistics

B.G., *J. Phys. A* 40, F761 (2007)B. Dietz, B.G et al., *Phys. Rev. E* 90, 022903 (2014)

Spectral properties

Collaboration with the experimental group of A. Richter (Darmstadt)

Smooth boundaries:

 $\delta\lambda_n\ll$ mean level spacing

In spite TRI, statistics are of GUE type

Non-smooth boundaries: Strong tunneling due to diffraction \Rightarrow

 $\delta \lambda_n \sim \text{ mean level spacing}$

Anomalous spectral statistics

Uni-directional Quantum Graphs

$$\det (1 - S\mathcal{L}(k)) = 0, \quad S = \begin{pmatrix} \mathcal{S} & 0 \\ 0 & \mathcal{S}^T \end{pmatrix}$$

 $\mathcal{L}(k) = \operatorname{diag}(e^{ikl_1}, \ldots, e^{ikl_{2B}}), l_i = l_{i+B}, B = \# edges$

Spectrum of $S\mathcal{L}(k)$ is **doubly degenerate** Spectral statistics are of GUE type

Adding back-scatterer

$$\tilde{\sigma} = e^{i\alpha} \left(\begin{array}{cc} i\sin\alpha & \cos\alpha \\ \cos\alpha & i\sin\alpha \end{array} \right)$$

- α controls strength of back-scattering
- \implies Lifting degeneracies

Q. What is the nearest-neighbor distribution p(s) between eigenvalues?

Half of the spectrum doesn't change: $\{\epsilon_i\}$ Secular equation for other half: $\{\lambda_i\}$

$$1/\nu \equiv \cot \alpha = \sum_{m=1}^{B} |A_m|^2 \cot \left(\frac{\lambda - \epsilon_m}{2}\right)$$

 $|A_m|^2$ = Amplitude of original eigenstates at $\tilde{\sigma}$ **Nearest neighbor distribution:** $p(s) = \frac{1}{2} \left(p_{in}(s) + p_{ex}(s) \right)$ $p_{in}(s)$: distribution of $\epsilon_i - \lambda_i$ $p_{ex}(s)$: distribution of $\lambda_i - \epsilon_{i+1}$

Random Matrix model

RMT assumptions:

 $\{\epsilon_n\} \sim \mathsf{CUE} \text{ distributed}$

$$p(|A_m|^2) = N \exp\left(-N|A_m|^2\right)$$

Joint probability:

$$P(\{\epsilon_i\}, \{\lambda_j\}) \propto \left(\prod_{\substack{i,j=1\\i>j}}^N 4\sin\frac{\epsilon_i - \epsilon_j}{2}\sin\frac{\lambda_i - \lambda_j}{2}\right) \exp\left(-\frac{N}{2\nu}\sum_{i=1}^N (\lambda_i - \epsilon_i)\right).$$

I. L. Aleiner et al., Phys. Rev. Lett. 80, 814 (1998)

Gap-Probability

Allows to write splitting distribution as derivative

$$p_{\rm in}(s) \propto \frac{\partial^2}{\partial \epsilon_{\rm min} \partial \lambda_{\rm max}} E(\epsilon_{\rm min}, \epsilon_{\rm max}; \lambda_{\rm min}, \lambda_{\rm max}) \Big|_{\substack{\epsilon_{\rm min} = \lambda_{\rm min} = -s\pi/N\\\epsilon_{\rm max} = \lambda_{\rm max} = +s\pi/N}}$$

Nearest neighbor distribution

Simple Surmise: Shifted Wigner-Distribution (for $\beta = 2$) gives a good approximation to $p_{in}(s)$, $p_{ex}(s)$:

$$p_{s}(s,c) = \mathbf{p}_{\beta=2}(s-c)/\mathcal{N}(c), \quad \mathcal{N}(c) = \frac{4}{\pi}c \, e^{-\frac{4c^{2}}{\pi}} + \operatorname{erfc}\left(\frac{2c}{\sqrt{\pi}}\right)$$

For $p_{in}(s)$ shift c determined by demanding: $p_s(0, c) = R_2(0)$

Analytical Results: $p_{in}(s)$, $p_{ex}(s)$ versus 2-point correlator $R_2(s)$

Generic position of scatterer

Comparison with Quantum Graphs: If $\tilde{\sigma}$ sits on "generic" edge \implies RMT result holds

Short loop scatterer

Strong **scarring** of wave-functions on cycle affects $|A_m|^2$ distribution.

Scarring of wave-functions

Deviations from Gaussian statistics

 $P(|\psi_n|^2) \neq N \exp(-|\psi_n|^2 N)$

Transition GUE \rightarrow GOE

Only for rank-one perturbation $p(0) \neq 0$, otherwise level repulsion

Breaking unidirectionality \implies Fast transition to GOE

Summary

M. Akila, B.G. J. Phys. A 48, 345101

Analytic formula for p(s). No level repulsion. Good agreement for generic position of $\tilde{\sigma}$

No agreement for $\tilde{\sigma}$ positioned on short loops \implies Strong scarring

Fast approach to GOE as # of scatterers increases

 \Box "Semiclassical" derivation of $R_2(s)$ through **periodic** orbit correlations \iff Scarring

Another interpretation

Chain of unidirectional graphs Γ

Band structure

