Existence of Ground State for the NLS on Star-like Graphs

A joint work in collaboration with D. Finco and D. Noja

Claudio Cacciapuoti

&

Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

QMath13: Mathematical Results in Quantum Physics Georgia Institute of Technology, October 8–11, 2016

A Star-Like Graph

Metric graph: Each edge is associated either to a compact interval (if it is finite) or to $[0, +\infty)$ (if it is infinite)

- E : denotes the set of edges of \mathcal{G}
- V: denotes the set of vertice of ${\mathcal G}$

Assumption 1

 \mathcal{G} is a connected graph with a finite number of edges and vertices, and it is composed by at least one infinite edge (one half-line) attached to a compact core.

A Star-Like Graph

Metric graph: Each edge is associated either to a compact interval (if it is finite) or to $[0, +\infty)$ (if it is infinite)

- E : denotes the set of edges of \mathcal{G}
- V: denotes the set of vertice of $\mathcal G$

Assumption 1

 \mathcal{G} is a connected graph with a finite number of edges and vertices, and it is composed by at least one infinite edge (one half-line) attached to a compact core.

A Star-Like Graph

Metric graph: Each edge is associated either to a compact interval (if it is finite) or to $[0, +\infty)$ (if it is infinite)

- E : denotes the set of edges of \mathcal{G}
- V: denotes the set of vertice of ${\mathcal G}$

Assumption 1

 \mathcal{G} is a connected graph with a finite number of edges and vertices, and it is composed by at least one infinite edge (one half-line) attached to a compact core.

Notation

Hilbert space: $\Psi \in L^2(\mathcal{G})$ means $\Psi = (\psi_1, \psi_2, ..., \psi_{|E|}) \qquad \psi_e \in L^2(I_e) \quad \forall e \in E$

Sobolev spaces:

$$\begin{split} H^1(\mathcal{G}) &:= \left\{ \Psi \in L^2(\mathcal{G}) | \, \psi_e \in H^1(I_e) \, \forall e \in E \text{ and } \Psi \text{ is continuous in the vertices} \right\} \\ H^2(\mathcal{G}) &:= \left\{ \Psi \in H^1(\mathcal{G}) | \, \psi_e \in H^2(I_e) \, \forall e \in E \right\} \end{split}$$

Scalar products and norms are defined in a natural way:

$$\|\Psi\|_{\mathcal{G}}^2 = \sum_{e \in E} \|\psi_e\|_{I_e}^2$$

The Nonlinear Schrödinger Equation

$$i\frac{d}{dt}\Psi = H\Psi - |\Psi|^{2\mu}\Psi \qquad 0 < \mu < 2$$

Linear term: H is a linear operator with $\delta\text{-interaction}$ in the vertices plus a potential

$$\mathcal{D}(H) := \left\{ \Psi \in H^2(\mathcal{G}) | \sum_{e \prec v} \partial_o \psi_e(v) = \alpha(v) \psi_e(v), \ \alpha(v) \in \mathbb{R}, \ \forall v \in V \right\}.$$
$$H\Psi = -\Psi'' + W\Psi$$

Nonlinear term: Focusing powerlike nonlinearity, subcritical

Componentwise:

$$i\frac{d}{dt}\psi_e = -\frac{d^2}{dx_e^2}\psi_e + W_e\psi_e - |\psi_e|^{2\mu}\psi_e \qquad \forall e \in E$$

(ロ)、(型)、(E)、(E)、 E) の(の)

- \blacktriangleright |E| scalar equations
- Coupled by the conditions in the vertices

The ground state for the NLS

Nonlinear energy functional: Defined on $H^1(\mathcal{G})$ as

$$E[\Psi] = \|\Psi'\|^2 + (\Psi, W\Psi) + \sum_{v \in V} \alpha(v) |\Psi(v)|^2 - \frac{1}{\mu+1} \|\Psi\|_{2\mu+2}^{2\mu+2}$$

Ground state: Minimizer of $E[\Psi]$ at fixed mass $m = \|\Psi\|^2$

Problem: Under what conditions on $\mathcal{G},\ H,\ m$ the ground state does/does not exist

or equivalently

Under what conditions on \mathcal{G} , H, m the infimum

$$\inf\{E[\Psi]|\Psi\in H^1(\mathcal{G}), \, \|\Psi\|^2=m\}$$

is/is not attained

Orbital Stability of Ground State

Let $\hat{\Psi}$ be a ground state, and consider the Cauchy problem:

$$\begin{cases} i\frac{d}{dt}\Psi = H\Psi - |\Psi|^{2\mu}\Psi\\ \Psi\Big|_{t=0} = \Psi_0 \end{cases}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $e^{i\omega t}\hat{\Psi}$, $\omega\in\mathbb{R}$, is the stationary solution of (1) with initial datum $\Psi_0=\hat{\Psi}.$

Orbital Stability of Ground State

Let $\hat{\Psi}$ be a ground state, and consider the Cauchy problem:

$$\begin{cases} i\frac{d}{dt}\Psi = H\Psi - |\Psi|^{2\mu}\Psi\\ \Psi\Big|_{t=0} = \Psi_0 \end{cases}$$
(1)

 $e^{i\omega t}\hat{\Psi}$, $\omega \in \mathbb{R}$, is the stationary solution of (1) with initial datum $\Psi_0 = \hat{\Psi}$.

Theorem (Cazenave Lions '82)

Let $0 < \mu < 2$. For any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if

$$\|\Psi_0 - \hat{\Psi}\|_{H^1} \le \delta(\varepsilon)$$

then the corresponding solution of (1) is such that

$$\sup_{t \in \mathbb{R}_+} \inf_{\theta \in \mathbb{R}} \|\Psi(t) - e^{i\theta} \hat{\Psi}\|_{H^1} \le \varepsilon$$

- Take W = 0 and $\alpha(v) = 0$ for all $v \in V$
- ► Find topological and metric conditions on *G* that guarantee existence/non existence of the ground state

Condition H: From every point of the graph one can get to infinity through two disjoint paths

- Take W = 0 and $\alpha(v) = 0$ for all $v \in V$
- ► Find topological and metric conditions on *G* that guarantee existence/non existence of the ground state

Condition H: From every point of the graph one can get to infinity through two disjoint paths

- Take W = 0 and $\alpha(v) = 0$ for all $v \in V$
- ► Find topological and metric conditions on *G* that guarantee existence/non existence of the ground state

Condition H: From every point of the graph one can get to infinity through two disjoint paths

- Take W = 0 and $\alpha(v) = 0$ for all $v \in V$
- ► Find topological and metric conditions on *G* that guarantee existence/non existence of the ground state

Condition H: From every point of the graph one can get to infinity through two disjoint paths

Adami-Serra-Tilli '14: If (H) is satisfied the ground state **does not** exist unless G is isometric to a bubble tower.

Main Results: Star-Graph, W = 0, $\alpha < 0$ [Adami, C.C., Finco, Noja '14]

- Consider a Star-Graph
- Take W = 0 and $\alpha(v) < 0$

Adami, C.C., Finco, Noja '14: There exists $m^* > 0$ such that for $0 < m < m^*$ the ground state exists.

Adami, Noja, Visciglia '13; Fukuizumi, Ohta, Ozawa '08: If |E| = 2 the ground state exists for any m > 0.

Adami, C.C., Finco, Noja '16: If $|E| \ge 3$ there exists $m^{**} > 0$ such that for $m > m^{**}$ the ground state **does not** exist.

Main Results: Generic Starlike-Graph [C.C., Finco, Noja prep. '16]

Assumption 2 $W = W_+ - W_-$ with $W_{\pm} \ge 0$, $W_+ \in L^1(\mathcal{G}) + L^{\infty}(\mathcal{G})$, and $W_- \in L^r(\mathcal{G})$ for some $r \in [1, 1 + 1/\mu]$.

Assumption 3 inf $\sigma(H) := -E_0$, $E_0 > 0$ and it is an isolated eigenvalue.

Theorem

Let $0 < \mu < 2$. If Assumptions 1, 2, and 3 hold true then

$$-\infty < \inf\{E[\Psi] | \Psi \in H^{1}(\mathcal{G}), \|\Psi\|^{2} = m\} \le -E_{0}m$$

for any m > 0. Moreover, there exists $m^* > 0$ such that for $0 < m < m^*$ the infimum is attained, i.e., the ground state exists.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main Results: Generic Starlike-Graph [C.C., Finco, Noja prep. '16]

The inequality

$$\inf\left\{E[\Psi]|\Psi\in H^1(\mathcal{G}), \, \|\Psi\|^2=m\right\}\leq -E_0m$$

is a direct consequence of

$$E[\Psi] \le \|\Psi'\|^2 + (\Psi, W\Psi) + \sum_{v \in V} \alpha(v) |\Psi(v)|^2$$

for all $\Psi \in H^1(\mathcal{G})$ and of

$$-E_0 m = \inf \left\{ \|\Psi'\|^2 + (\Psi, W\Psi) + \sum_{v \in V} \alpha(v) |\Psi(v)|^2 \right| \Psi \in H^1(\mathcal{G}), \, \|\Psi\|^2 = m \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Concentration-Compactness

For any $\Psi\in L^2(\mathcal{G})$ define the concentration function

$$\rho(\Psi, s) = \sup_{y \in \mathcal{G}} \|\Psi\|_{L^2(B_{\mathcal{G}}(y, s))}^2.$$

Let $\{\Psi_n\}_{n\in\mathbb{N}}$ be such that: $\Psi_n\in H^1(\mathcal{G})$,

$$\|\Psi_n\|^2 = m \qquad \sup_{n \in \mathbb{N}} \|\Psi'_n\| < C$$

Define the concentrated mass parameter τ as

$$\tau = \lim_{s \to \infty} \lim_{n \to \infty} \rho(\Psi_n, s) \,.$$

- i) (Compactness) If au=m, at least one of the two following cases occurs:
 - $i_1)$ (Convergence) There exists a function $\Psi\in H^1(\mathcal{G})$ such that $\Psi_n\to \Psi$ in $L^p(\mathcal{G})$ for all $2\leq p\leq\infty$.
 - i_2) (Runaway) $\|\Psi_n\|_{L^p(B_{\mathcal{G}}(y,s))} \to 0$ for all $2 \le p \le \infty$, $y \in \mathcal{G}$, s > 0.
- ii) (Vanishing) If $\tau = 0$, then $\Psi_n \to 0$ in $L^p(\mathcal{G})$ for all 2 .
- iii) (Dichotomy) If $0 < \tau < m$, then there exist two sequences $\{R_n\}_{n \in \mathbb{N}}$ and $\{S_n\}_{n \in \mathbb{N}}$ in $H^1(\mathcal{G})$ such that: $\|\Psi_n R_n S_n\| \to 0$,

$$||R_n||^2 \to \tau \qquad ||S_n||^2 \to m - \tau$$

 $\operatorname{dist}(\operatorname{Supp} R_n, \operatorname{Supp} S_n) \to \infty$

Concentration-Compactness

- If Ψ_n is a minimizing sequence
 - Vanishing and Dichotomy cannot occur
 - ▶ If *i*₂) (Runaway), then

$$\lim_{n \to \infty} E[\Psi_n] \ge -\gamma_\mu m^{1 + \frac{2\mu}{2-\mu}}.$$

 $\blacktriangleright -\gamma_{\mu}m^{1+\frac{2\mu}{2-\mu}}$ is the energy of the ground state of mass m of the NLS on the real line

$$-\gamma_{\mu}m^{1+\frac{2\mu}{2-\mu}} = \inf_{\substack{\psi \in H^{1}(\mathbb{R}) \\ \|\psi\|_{L^{2}(\mathbb{R})}^{2} = m}} \left(\|\psi'\|_{L^{2}(\mathbb{R})}^{2} - \frac{1}{\mu+1} \|\psi\|_{L^{2\mu+2}(\mathbb{R})}^{2\mu+2} \right)$$

・ロト・日本・モト・モート ヨー うへで

Concentration-Compactness

- If Ψ_n is a minimizing sequence
 - Vanishing and Dichotomy cannot occur
 - ▶ If *i*₂) (Runaway), then

$$\lim_{n \to \infty} E[\Psi_n] \ge -\gamma_\mu m^{1 + \frac{2\mu}{2-\mu}}.$$

But for m small enough

$$\inf \left\{ E[\Psi] | \Psi \in H^{1}(\mathcal{G}), \, \|\Psi\|^{2} = m \right\} \leq -E_{0}m < -\gamma_{\mu}m^{1 + \frac{2\mu}{2-\mu}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Indeed $m^* = (E_0/\gamma_\mu)^{\frac{1}{\mu} - \frac{1}{2}}$

Bifurcation Analysis

If $E_{\rm 0}$ is a simple eigenvalue one can use bifurcation theory to find a candidate. Consider the stationary equation

$$H\Phi - |\Phi|^{2\mu}\Phi = -\omega\Phi \qquad \Phi \in \mathcal{D}(H), \ \omega \in \mathbb{R}$$

Let $H\Phi_0 = -E_0\Phi_0$, with $\|\Phi_0\|^2 = 1$. Then for $\omega > E_0$ there exists a solution

$$\Phi(\omega) = a_*(\omega)\Phi_0 + \Theta_*(a_*(\omega), \omega)$$

such that

$$m(\omega) = \|\Phi(\omega)\|^2 = \left(\frac{\omega - E_0}{\|\Phi_0\|_{2\mu+2}^{2\mu+2}}\right)^{\frac{1}{\mu}} + o\left((\omega - E_0)^{\frac{1}{\mu}}\right)$$
$$\|\Phi(\omega)\|^2$$

 $E[\Phi(\omega(m))] = -E_0m + o(m)$

Remarks

> A sufficient condition to have an isolated eigenvalue is

$$\int_{\mathcal{G}} W dx + \sum_{v \in V} \alpha(v) < 0$$

- ▶ If W = 0 and $\alpha(v) \le 0$ $\forall v \in V$, and strictly negative for at least one vertex. Then $-E_0$ is a simple eigenvalue [Exner, Jex '12].
- For compact graphs with δ-vertices, simplicity of the spectrum can be achieved by small modification of edge lengths [Berkolaiko, Liu '16].
- ► The analysis can be extended in principle to the case in which -E₀ has multiplicity larger than one. One has to use bifurcation analysis in the degenerate case.
- We do not claim that $\Phi(\omega(m))$ is the ground state, even though we conjecture that this is true. This can be proved in the case of the Star-Graph with W = 0 and $\alpha(v) < 0$.
- Our result does not cover the case W = 0, $\alpha(v) = 0$, treated by Adami, Serra, Tilli. Since in this case there are not isolated eigenvalues, $\sigma(H) = \sigma_{ess}(H) = [0, +\infty)$.

Global Well-Posedness in $H^1(\mathcal{G})$

Theorem (Global Well-Posedness) Let $0 < \mu < 2$. For any $\Psi_0 \in H^1(\mathcal{G})$, the Cauchy problem

$$\begin{cases} i\frac{d}{dt}\Psi = H\Psi - |\Psi|^{2\mu}\Psi\\ \Psi\Big|_{t=0} = \Psi_0 \end{cases}$$
(2)

has a unique weak solution $\Psi \in C^0([0,\infty), H^1(\mathcal{G})) \cap C^1([0,\infty), H^1(\mathcal{G})^*)$. The proof uses the following conservation laws

Proposition (Conservation laws)

Let $\mu > 0$. For any weak solution $\Psi \in C^0([0,T), H^1(\mathcal{G})) \cap C^1([0,T), H^1(\mathcal{G})^*)$ to the problem (2), the following conservation laws hold at any time t:

$$\|\Psi(t)\|^2 = \|\Psi_0\|^2, \qquad E[\Psi(t)] = E[\Psi_0].$$

Together with Local Well-posedness (proved by Banach fixed point theorem) and Gagliardo-Nirenberg inequalities

Gagliardo-Nirenberg Inequalities

Proposition

Let \mathcal{G} be graph with a finite number of edges and vertices. Then if $p,q \in [2,+\infty]$, with $p \ge q$, and $\alpha = \frac{2}{2+q}(1-q/p)$, there exists C such that

 $\|\Psi\|_p \leq C \|\Psi\|_{H^1}^{\alpha} \|\Psi\|_q^{1-\alpha},$

for all $\Psi \in H^1(\mathcal{G})$.

If the $\mathcal G$ has one or more infinite edges one has the stronger inequality

 $\|\Psi\|_{p} \leq C \|\Psi'\|^{\alpha} \|\Psi\|_{q}^{1-\alpha},$

See, e.g., [Mugnolo Springer '14, Adami-Serra-Tilli JFA '16].