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A Star-Like Graph
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Metric graph: Each edge is associated either to a compact interval (if it is
finite) or to [0,+∞) (if it is infinite)

E : denotes the set of edges of G
V : denotes the set of vertice of G

Assumption 1

G is a connected graph with a finite number of edges and vertices, and it is
composed by at least one infinite edge (one half-line) attached to a compact
core.



A Star-Like Graph

∞ ∞

∞v2 v3

v4v5

v6v1

v7

Metric graph: Each edge is associated either to a compact interval (if it is
finite) or to [0,+∞) (if it is infinite)

E : denotes the set of edges of G
V : denotes the set of vertice of G

Assumption 1

G is a connected graph with a finite number of edges and vertices, and it is
composed by at least one infinite edge (one half-line) attached to a compact
core.



A Star-Like Graph

∞ ∞

∞v2 v3

v4v5

v6v1

v7

Metric graph: Each edge is associated either to a compact interval (if it is
finite) or to [0,+∞) (if it is infinite)

E : denotes the set of edges of G
V : denotes the set of vertice of G

Assumption 1

G is a connected graph with a finite number of edges and vertices, and it is
composed by at least one infinite edge (one half-line) attached to a compact
core.



Notation

Hilbert space: Ψ ∈ L2(G) means

Ψ = (ψ1, ψ2, ..., ψ|E|) ψe ∈ L2(Ie) ∀e ∈ E

Sobolev spaces:

H1(G) :=
{

Ψ ∈ L2(G)|ψe ∈ H1(Ie) ∀e ∈ E and Ψ is continuous in the vertices
}

H2(G) :=
{

Ψ ∈ H1(G)|ψe ∈ H2(Ie) ∀e ∈ E
}

Scalar products and norms are defined in a natural way:

‖Ψ‖2G =
∑

e∈E
‖ψe‖2Ie



The Nonlinear Schrödinger Equation

i
d

dt
Ψ = HΨ− |Ψ|2µΨ 0 < µ < 2

Linear term: H is a linear operator with δ-interaction in the vertices plus a
potential

D(H) :=

{
Ψ ∈ H2(G)|

∑

e≺v
∂oψe(v) = α(v)ψe(v), α(v) ∈ R, ∀v ∈ V

}
.

HΨ = −Ψ′′ +WΨ

Nonlinear term: Focusing powerlike nonlinearity, subcritical

Componentwise:

i
d

dt
ψe = − d2

dx2e
ψe +Weψe − |ψe|2µψe ∀e ∈ E

I |E| scalar equations

I Coupled by the conditions in the vertices



The ground state for the NLS

Nonlinear energy functional: Defined on H1(G) as

E[Ψ] = ‖Ψ′‖2 + (Ψ,WΨ) +
∑

v∈V
α(v)|Ψ(v)|2 − 1

µ+ 1
‖Ψ‖2µ+2

2µ+2

Ground state: Minimizer of E[Ψ] at fixed mass m = ‖Ψ‖2

Problem: Under what conditions on G, H, m the ground state does/does not
exist

or equivalently

Under what conditions on G, H, m the infimum

inf{E[Ψ]|Ψ ∈ H1(G), ‖Ψ‖2 = m}

is/is not attained



Orbital Stability of Ground State

Let Ψ̂ be a ground state, and consider the Cauchy problem:



i
d

dt
Ψ = HΨ− |Ψ|2µΨ

Ψ
∣∣
t=0

= Ψ0

(1)

eiωtΨ̂, ω ∈ R, is the stationary solution of (1) with initial datum Ψ0 = Ψ̂.
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Theorem (Cazenave Lions ’82)

Let 0 < µ < 2. For any ε > 0 there exists δ(ε) > 0 such that if

‖Ψ0 − Ψ̂‖H1 ≤ δ(ε)

then the corresponding solution of (1) is such that

sup
t∈R+

inf
θ∈R
‖Ψ(t)− eiθΨ̂‖H1 ≤ ε
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Main Results: W = 0, α = 0 [Adami-Serra-Tilli ’14 ’16]

I Take W = 0 and α(v) = 0 for all v ∈ V
I Find topological and metric conditions on G that guarantee existence/non

existence of the ground state

Condition H: From every point of the graph one can get to infinity through
two disjoint paths
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G is isometric to a bubble tower.
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Main Results: Star-Graph, W = 0, α < 0 [Adami, C.C., Finco, Noja ’14]

I Consider a Star-Graph

I Take W = 0 and α(v) < 0

∞

∞ ∞

∞

v

Adami, C.C., Finco, Noja ’14: There exists m∗ > 0 such that for 0 < m < m∗

the ground state exists.

Adami, Noja, Visciglia ’13; Fukuizumi, Ohta, Ozawa ’08: If |E| = 2 the
ground state exists for any m > 0.

Adami, C.C., Finco, Noja ’16: If |E| ≥ 3 there exists m∗∗ > 0 such that for
m > m∗∗ the ground state does not exist.



Main Results: Generic Starlike-Graph [C.C., Finco, Noja prep. ’16]

Assumption 2

W = W+ −W− with W± ≥ 0, W+ ∈ L1(G) + L∞(G), and W− ∈ Lr(G) for
some r ∈ [1, 1 + 1/µ].

Assumption 3

inf σ(H) := −E0, E0 > 0 and it is an isolated eigenvalue.

Theorem
Let 0 < µ < 2. If Assumptions 1, 2, and 3 hold true then

−∞ < inf{E[Ψ]|Ψ ∈ H1(G), ‖Ψ‖2 = m} ≤ −E0m

for any m > 0. Moreover, there exists m∗ > 0 such that for 0 < m < m∗ the
infimum is attained, i.e., the ground state exists.



Main Results: Generic Starlike-Graph [C.C., Finco, Noja prep. ’16]

The inequality

inf
{
E[Ψ]|Ψ ∈ H1(G), ‖Ψ‖2 = m

}
≤ −E0m

is a direct consequence of

E[Ψ] ≤ ‖Ψ′‖2 + (Ψ,WΨ) +
∑

v∈V
α(v)|Ψ(v)|2

for all Ψ ∈ H1(G) and of

−E0m = inf
{
‖Ψ′‖2 + (Ψ,WΨ) +

∑

v∈V
α(v)|Ψ(v)|2

∣∣∣Ψ ∈ H1(G), ‖Ψ‖2 = m
}



Concentration-Compactness

For any Ψ ∈ L2(G) define the concentration function

ρ(Ψ, s) = sup
y∈G
‖Ψ‖2L2(BG(y,s))

.

Let {Ψn}n∈N be such that: Ψn ∈ H1(G),

‖Ψn‖2 = m sup
n∈N
‖Ψ′n‖ < C

Define the concentrated mass parameter τ as

τ = lim
s→∞

lim
n→∞

ρ(Ψn, s) .

i) (Compactness) If τ = m, at least one of the two following cases occurs:
i1) (Convergence) There exists a function Ψ ∈ H1(G) such that Ψn → Ψ in

Lp(G) for all 2 ≤ p ≤ ∞ .

i2) (Runaway) ‖Ψn‖Lp(BG(y,s)) → 0 for all 2 ≤ p ≤ ∞, y ∈ G, s > 0.

ii) (Vanishing) If τ = 0, then Ψn → 0 in Lp(G) for all 2 < p ≤ ∞.

iii) (Dichotomy) If 0 < τ < m, then there exist two sequences {Rn}n∈N and
{Sn}n∈N in H1(G) such that: ‖Ψn −Rn − Sn‖ → 0,

‖Rn‖2 → τ ‖Sn‖2 → m− τ
dist(Supp Rn,Supp Sn)→∞



Concentration-Compactness

If Ψn is a minimizing sequence

I Vanishing and Dichotomy cannot occur

I If i2) (Runaway), then

lim
n→∞

E[Ψn] ≥ −γµm1+ 2µ
2−µ .

I −γµm1+ 2µ
2−µ is the energy of the ground state of mass m of the NLS on

the real line

−γµm1+ 2µ
2−µ = inf

ψ∈H1(R)
‖ψ‖2

L2(R)=m

(
‖ψ′‖2L2(R) −

1

µ+ 1
‖ψ‖2µ+2

L2µ+2(R)

)



Concentration-Compactness

If Ψn is a minimizing sequence

I Vanishing and Dichotomy cannot occur

I If i2) (Runaway), then

lim
n→∞

E[Ψn] ≥ −γµm1+ 2µ
2−µ .

I But for m small enough

inf
{
E[Ψ]|Ψ ∈ H1(G), ‖Ψ‖2 = m

}
≤ −E0m < −γµm1+ 2µ

2−µ

m

−E0m

−γµm1+ 2µ
2−µ

I Indeed m∗ = (E0/γµ)
1
µ
− 1

2



Bifurcation Analysis

If E0 is a simple eigenvalue one can use bifurcation theory to find a candidate.
Consider the stationary equation

HΦ− |Φ|2µΦ = −ωΦ Φ ∈ D(H), ω ∈ R

Let HΦ0 = −E0Φ0, with ‖Φ0‖2 = 1. Then for ω > E0 there exists a solution

Φ(ω) = a∗(ω)Φ0 + Θ∗(a∗(ω), ω)

such that

m(ω) = ‖Φ(ω)‖2 =

(
ω − E0

‖Φ0‖2µ+2
2µ+2

) 1
µ

+ o
(

(ω − E0)
1
µ

)

ω

‖Φ(ω)‖2

E0

E[Φ(ω(m))] = −E0m+ o(m)



Remarks

I A sufficient condition to have an isolated eigenvalue is
∫

G
Wdx+

∑

v∈V
α(v) < 0

I If W = 0 and α(v) ≤ 0 ∀v ∈ V , and strictly negative for at least one
vertex. Then −E0 is a simple eigenvalue [Exner, Jex ’12].

I For compact graphs with δ-vertices, simplicity of the spectrum can be
achieved by small modification of edge lengths [Berkolaiko, Liu ’16].

I The analysis can be extended in principle to the case in which −E0 has
multiplicity larger than one. One has to use bifurcation analysis in the
degenerate case.

I We do not claim that Φ(ω(m)) is the ground state, even though we
conjecture that this is true. This can be proved in the case of the
Star-Graph with W = 0 and α(v) < 0.

I Our result does not cover the case W = 0, α(v) = 0, treated by Adami,
Serra, Tilli. Since in this case there are not isolated eigenvalues,
σ(H) = σess(H) = [0,+∞).



Global Well-Posedness in H1(G)

Theorem (Global Well-Posedness)

Let 0 < µ < 2. For any Ψ0 ∈ H1(G), the Cauchy problem




i
d

dt
Ψ = HΨ− |Ψ|2µΨ

Ψ
∣∣
t=0

= Ψ0

(2)

has a unique weak solution Ψ ∈ C0([0,∞), H1(G)) ∩ C1([0,∞), H1(G)?).

The proof uses the following conservation laws

Proposition (Conservation laws)

Let µ > 0. For any weak solution Ψ ∈ C0([0, T ), H1(G)) ∩ C1([0, T ), H1(G)?)
to the problem (2), the following conservation laws hold at any time t:

‖Ψ(t)‖2 = ‖Ψ0‖2, E[Ψ(t)] = E[Ψ0].

Together with Local Well-posedness (proved by Banach fixed point theorem)
and Gagliardo-Nirenberg inequalities



Gagliardo-Nirenberg Inequalities

Proposition

Let G be graph with a finite number of edges and vertices. Then if
p, q ∈ [2,+∞], with p ≥ q, and α = 2

2+q
(1− q/p), there exists C such that

‖Ψ‖p ≤ C‖Ψ‖αH1‖Ψ‖1−αq ,

for all Ψ ∈ H1(G).

If the G has one or more infinite edges one has the stronger inequality

‖Ψ‖p ≤ C‖Ψ′‖α‖Ψ‖1−αq ,

See, e.g., [Mugnolo Springer ’14, Adami-Serra-Tilli JFA ’16].


