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Quantum graphs

Quantum graph: one particle moving along edges of a finite, metric graph.

A graph with V' = 5 vertices and EF = 7 edges




The (simplest) one-particle Hamiltonian is a Laplacian, describing a free particle on the graph. It
acts on the edge-e component as
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plus (self-adjoint) boundary conditions in the vertices.

There is a close analogy to Laplacians on manifolds. Many spectral properties are known, including

Eigenvalue count follows a Weyl law

Eigenvalue correlations (empirically) follow RMT predictions

Trace formulae

Periodic orbit correlations (heuristically) leading to eigenvalues correlations

Inverse problems, isospectrality

Nodal domains of eigenfunctions




Many-particle quantum systems on graphs are, in comparison, still less studied.

Our goals:

Construct models with two-particle interactions
Study basic spectral properties: discreteness of spectra, Weyl law etc.

L
L
e lIdentical particles: bosons, fermions
e (Bose-Einstein condensation)

L

Secular equation, eigenvalues, spectral statistics
Other topics include:

e Many-particle statistics (Harrison, Keating, Robbins, Sawicki 2010-13)

e Non-linear (Schrodinger or Gross-Pitaevskii) equations (Adami et al 2010-13)
e Anderson localisation (Sabri 2012-13)

e Trace formulae

e Other types of operators: Schrédinger, Pauli, Dirac




Basic constructions

One-particle Hilbert space

Hy=LT) =@ L*0,1) = {¢p = (1, ..., ¥p); e € L0, 1)},

and similarly Sobolev spaces H™(I"). Boundary values (in edge ends),

wbv — (¢1(0)a RIS ¢E<O)7 77b1(l1)7 SRR wE(lE))T
Yo = (¥100), -+, ¥ (0), =1 (), -, —¥(lm) "
Linear maps on the space C?¥ of boundary values:

e Projector P,

e [ self-adjoint on ran PlL.




Self-adjoint realisations of the Laplacian are in one-to-one correspondence to closed, semi-bounded
quadratic forms.

Theorem [Kuchment 04]
The quadratic form
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with domain
DQ(l) = {¢ c Hl(F)a leb’u — O} )

15 associated with the one-particle Laplacian on the domain

Dy (Py, L) = {¢ € H*(I'); Py, = 0 and P4, + L1 P by, = 0} .




Scattering approach
Eigenvalues k2 of the Laplacian as zeros of a secular determinant:
det(1 — U(k)) =0,

where U (k) = S(k)T (k) is a unitary 2F X 2FE matrix with

1kl
S(k) = —(P+ L+ ikP") " (P+ L+ ikP*) and T(k)= (;M 60 )

e Laplacian with Neumann b.c.: Kottos, Smilansky (1997)
e Laplacian with general self adjoint b.c.: Kostrykin, Schrader (2006)

e Schrodinger operators —A + V': Rueckriemen, Smilansky (2012), JB, Egger, Rueckriemen
(2015)




Many-particle systems
From 71 one constructs the N-particle Hilbert space
Hyn=H1® - ® Hi1,
so that NN-particle states are functions W = (¢€1---6N) with
Yeyony € L (Dey.en) s Where Dep oy = [0,1e,] X -+ X [0,1c] -

In the following we shall restrict ourselves to N = 2 and . = 1, i.e., two particles on an interval.
The configuration space then is D = (0,1) x (0, 1).

We construct rigorous versions of d-type contact interactions,

H=—-As+a(zx)d(x —vy) .




The contact interactions require jump conditions on the normal derivative across the diagonal

x = y. In more detail:
Dissect the square D as D* = D_ U D, along x = y and introduce functions
_|_
L, , T >
'(pi: Dy — C, suchthat ¥(z,y) = w_< v) I
v (z,y), <y

Use boundary values

(1 (0,y) ¥, (0,y)
?,b:(l,y)\ ( —?ﬁ%(l,y)) \

— w (y70) / _ wy y70

I R O S I I L
v (y, ) (Wi — vy, )
\& (v, 1)) \(%; —%,) (¥, v)

along the six sides of the triangles D_ and D,.




Split the space of boundary values as

6
C" = Vverteac D Vcontact .

Choose 'non-interacting’ Pyerter and Lyerter, as well as

1

1 —1 1
Pcontact(y> — 5 <_1 1 ) ) Lcontact(y) — _Ea(y)ﬂ2 )

and set up a quadratic form,

L] = (Y, V) 12 pey — / (o (¥)s L(Y) b0 (y)) s dy

with domain
D2 = { € H(D"); P(y)n(y) =0Vy € [0,1]} .
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This means that ¢ (x, y) is continuous across x = y, but the normal derivative jumps by «,

b =y —ayT =, —

Theorem [JB, Kerner 2013]

The quadratic form Qg)L on the domain DQ(Q) 18 closed and semi-bounded. The associated
self-adjoint operator is the Laplacian — QAo on the domain

Do(P, L) := {¢p € H*(D); P(y)¥us(y) = 0 and P~ ()b, (¥)+L(y) P (y)¢pu(y) = 0} .
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A basic spectral property of the operators is the following.

Theorem [JB, Kerner 2013]
The operator (—Aq, Do( P, L)) has a compact resolvent. In particular, it possesses a discrete
spectrum and the eigenvalue count follows a Weyl law,

EQ
#{n € N; AngA}~4—>\, A — 00 .
T
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Identical particles

For two particles the bosonic/fermionic projector is
1

e It can be arranged that [Hs, IIg] = 0, hence the operator has a bosonic version Hs p.
e There is an immediate generalisation to arbitrary compact graphs.

e The operator can be promoted to an operator for N bosons,

N 82
HN,B: —ZF—F (X($Z)(S(CIZ@—CBJ) .

i=1 v i<j

This yields an extension of the Lieb-Liniger model from a circle to a metric graph.

Hardcore-limit o« — oo: Dirichlet conditions at ; = xz; (Tonks-Girardeau gas).
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Solvable models

(This is recent work with George Garforth: arXiv:1609.00828v1)
For one particle, eigenfunctions are of the form
a eik:c + b e—ik:x

on each edge. This is used to produce the finite-dimensional secular determinant. For two-particles,
the general form is

/ Ja(ki, k2) el F1eitkar) qp  dp,
R

However, in some cases a Bethe ansatz for the eigenfunctions,

Z A(kl, k2> ei(k1$1+k2$2)
R

(finite sum) will be possible. Such cases are called solvable.
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Early examples are:

e J-interacting particles on a circle: Lieb, Liniger (1963)
e J-interacting particles on an interval: Yang (1967), Gaudin (1971)

° S—interacting particles on a star graph with two infinite edges Caudrelier, Crampe (2007)

The d-interaction on the star graph with two infinite edges is formally given as
a(6(z1 — z2) + 6(z1 + x2)).

It acts whenever 1 = x5, i.e., when both particles are located the same distance away from
the vertex, either on the same or on different edges.

A similar interaction can be defined on any graph and can be made rigorous in close analogy to
the d-interactions. When e, e’ are two edges emanating from the same vertex, then

+ —
wee/ — ’lpe/e
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across x = vy, and

Buthr — Oyt — atp )y = Bup, — Oyt
The Bethe ansatz then is of the form

S 4, eltoitoe),
oWy

where W is a finite group (of order 8) generated by I, T', R with relations

1. TT =1,
2. RR =1,
3. TRTR = RTRT.
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We applied this in two examples:

e Equilateral star graph with DFT central scattering matrix

e Tetrahedron with rationally independent edge lengths

17



In both types of examples we found a secular equation,
det (1 — U(k1, ko)) = 0,
for the eigenvalues k7 + k2, where
U(ki,ks) = E(k2)Y (ko — k1)(12 ® S(ke) ® 125)Y (k1 + ko),

and

1 [(—ia Kk 0 1
Y(k:)—k_l_m( . _m)®a+<l O)@(]lEz—a)TEz

0O 1 i
Ek) = 14s ® (1 0) ® e™,

T ;2 is a permutation matrix.
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Abbildung 2: Eigenvalue counting function
N (FE) for two bosons on a tetrahedron

Abbildung 1: Eigenvalue counting function
N(FE) for two bosons on a 9-edge equilate-
ral star
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Abbildung 3: Integrated
(first 3000 eigenvalues).

p(s)ds

Poissonian
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level spacings distributions for systems of two bosons on a tetrahedron
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