ROYAL HOLLOWAY
UNIVERSITY
OF LONDON

Spectras of interacting particles on quantum graphs

QMath 13
Atlanta, 8-11 October 2016

Jens Bolte
Royal Holloway, University of London

Based on joint work with J. Kerner, G. Garforth

Quantum graphs

Quantum graph: one particle moving along edges of a finite, metric graph.

A graph with $V=5$ vertices and $E=7$ edges

The (simplest) one-particle Hamiltonian is a Laplacian, describing a free particle on the graph. It acts on the edge-e component as

$$
\left(-\Delta_{1} \psi\right)_{e}\left(x_{e}\right)=-\frac{\partial^{2} \psi_{e}}{\partial x_{e}^{2}}\left(x_{e}\right)
$$

plus (self-adjoint) boundary conditions in the vertices.
There is a close analogy to Laplacians on manifolds. Many spectral properties are known, including

- Eigenvalue count follows a Weyl law
- Eigenvalue correlations (empirically) follow RMT predictions
- Trace formulae
- Periodic orbit correlations (heuristically) leading to eigenvalues correlations
- Inverse problems, isospectrality
- Nodal domains of eigenfunctions

Many-particle quantum systems on graphs are, in comparison, still less studied.
Our goals:

- Construct models with two-particle interactions
- Study basic spectral properties: discreteness of spectra, Weyl law etc.
- Identical particles: bosons, fermions
- (Bose-Einstein condensation)
- Secular equation, eigenvalues, spectral statistics

Other topics include:

- Many-particle statistics (Harrison, Keating, Robbins, Sawicki 2010-13)
- Non-linear (Schrödinger or Gross-Pitaevskii) equations (Adami et al 2010-13)
- Anderson localisation (Sabri 2012-13)
- Trace formulae
- Other types of operators: Schrödinger, Pauli, Dirac

Basic constructions

One-particle Hilbert space

$$
\mathcal{H}_{1}=L^{2}(\Gamma)=\bigoplus_{e=1}^{E} L^{2}\left(0, l_{e}\right)=\left\{\psi=\left(\psi_{1}, \ldots, \psi_{E}\right) ; \psi_{e} \in L^{2}\left(0, l_{e}\right)\right\},
$$

and similarly Sobolev spaces $H^{m}(\Gamma)$. Boundary values (in edge ends),

$$
\begin{aligned}
\psi_{b v} & =\left(\psi_{1}(0), \ldots, \psi_{E}(0), \psi_{1}\left(l_{1}\right), \ldots, \psi_{E}\left(l_{E}\right)\right)^{T} \\
\psi_{b v}^{\prime} & =\left(\psi_{1}^{\prime}(0), \ldots, \psi_{E}^{\prime}(0),-\psi_{1}^{\prime}\left(l_{1}\right), \ldots,-\psi_{E}^{\prime}\left(l_{E}\right)\right)^{T} .
\end{aligned}
$$

Linear maps on the space $\mathbb{C}^{2 E}$ of boundary values:

- Projector P_{1},
- L_{1} self-adjoint on ran P_{1}^{\perp}.

Self-adjoint realisations of the Laplacian are in one-to-one correspondence to closed, semi-bounded quadratic forms.

Theorem [Kuchment 04]
The quadratic form

$$
Q_{P_{1}, L_{1}}^{(1)}[\psi]=\sum_{e=1}^{E} \int_{0}^{l e}\left|\psi_{e}^{\prime}(x)\right|^{2} d x-\left(\psi_{b v}, L_{1} \psi_{b v}\right)_{\mathbb{C}^{2 E}}
$$

with domain

$$
\mathcal{D}_{Q^{(1)}}=\left\{\psi \in H^{1}(\Gamma) ; P_{1} \psi_{b v}=0\right\}
$$

is associated with the one-particle Laplacian on the domain

$$
\mathcal{D}_{1}\left(P_{1}, L_{1}\right)=\left\{\psi \in H^{2}(\Gamma) ; P_{1} \psi_{b v}=0 \text { and } P_{1}^{\perp} \psi_{b v}^{\prime}+L_{1} P_{1}^{\perp} \psi_{b v}=0\right\} .
$$

Scattering approach

Eigenvalues k^{2} of the Laplacian as zeros of a secular determinant:

$$
\operatorname{det}(\mathbb{1}-U(k))=0
$$

where $U(k)=S(k) T(k)$ is a unitary $2 E \times 2 E$ matrix with

$$
S(k)=-\left(P+L+i k P^{\perp}\right)^{-1}\left(P+L+i k P^{\perp}\right) \quad \text { and } \quad T(k)=\left(\begin{array}{cc}
0 & e^{i k l} \\
e^{i k l} & 0
\end{array}\right)
$$

- Laplacian with Neumann b.c.: Kottos, Smilansky (1997)
- Laplacian with general self adjoint b.c.: Kostrykin, Schrader (2006)
- Schrödinger operators $-\Delta+V$: Rueckriemen, Smilansky (2012), JB, Egger, Rueckriemen (2015)

Many-particle systems

From \mathcal{H}_{1} one constructs the N-particle Hilbert space

$$
\mathcal{H}_{N}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{1}
$$

so that N-particle states are functions $\Psi=\left(\psi_{e_{1} \ldots e_{N}}\right)$ with

$$
\psi_{e_{1} \ldots e_{N}} \in L^{2}\left(D_{e_{1} \ldots e_{N}}\right), \quad \text { where } D_{e_{1} \ldots e_{N}}=\left[0, l_{e_{1}}\right] \times \cdots \times\left[0, l_{e_{N}}\right]
$$

In the following we shall restrict ourselves to $N=2$ and $E=1$, i.e., two particles on an interval. The configuration space then is $D=(0, l) \times(0, l)$.

We construct rigorous versions of δ-type contact interactions,

$$
H=-\Delta_{2}+\alpha(x) \delta(x-y)
$$

The contact interactions require jump conditions on the normal derivative across the diagonal $x=y$. In more detail:

Dissect the square D as $D^{*}=D_{-} \cup D_{+}$along $x=y$ and introduce functions

$$
\psi^{ \pm}: \quad D_{ \pm} \rightarrow \mathbb{C}, \quad \text { such that } \quad \psi(x, y)= \begin{cases}\psi^{+}(x, y), & x>y \\ \psi^{-}(x, y), & x<y\end{cases}
$$

Use boundary values

$$
\psi_{b v}(y)=\left(\begin{array}{c}
\psi^{-}(0, y) \\
\psi^{+}(l, y) \\
\psi^{+}(y, 0) \\
\psi^{-}(y, l) \\
\psi^{+}(y, y) \\
\psi^{-}(y, y)
\end{array}\right) \quad \text { and } \quad \psi_{b v}^{\prime}(y)=\left(\begin{array}{c}
\psi_{x}^{-}(0, y) \\
-\psi_{x}^{+}(l, y) \\
\psi_{y}^{+}(y, 0) \\
-\psi_{y}^{-}(y, l) \\
\left(\psi_{x}^{+}-\psi_{y}^{+}\right)(y, y) \\
\left(\psi_{x}^{-}-\psi_{y}^{-}\right)(y, y)
\end{array}\right)
$$

along the six sides of the triangles D_{-}and D_{+}.

Split the space of boundary values as

$$
\mathbb{C}^{6}=V_{\text {vertex }} \oplus V_{\text {contact }}
$$

Choose 'non-interacting' $P_{v e r t e x}$ and $L_{v e r t e x}$, as well as

$$
P_{\text {contact }}(y)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad L_{\text {contact }}(y)=-\frac{1}{2} \alpha(y) \mathbb{1}_{2}
$$

and set up a quadratic form,

$$
Q_{P, L}^{(2)}[\psi]=\langle\nabla \psi, \nabla \psi\rangle_{L^{2}\left(D^{*}\right)}-\int_{0}^{l}\left\langle\psi_{b v}(y), L(y) \psi_{b v}(y)\right\rangle_{\mathbb{C}^{6}} \mathrm{~d} y
$$

with domain

$$
\mathcal{D}_{Q^{(2)}}=\left\{\psi \in H^{1}\left(D^{*}\right) ; P(y) \psi_{b v}(y)=0 \forall y \in[0, l]\right\}
$$

This means that $\psi(x, y)$ is continuous across $x=y$, but the normal derivative jumps by α,

$$
\psi_{x}^{+}-\psi_{y}^{+}-\alpha \psi^{+}=\psi_{x}^{-}-\psi_{y}^{-}
$$

Theorem [JB, Kerner 2013]

The quadratic form $Q_{P, L}^{(2)}$ on the domain $\mathcal{D}_{Q^{(2)}}$ is closed and semi-bounded. The associated self-adjoint operator is the Laplacian $-\Delta_{2}$ on the domain
$\mathcal{D}_{2}(P, L):=\left\{\psi \in H^{2}(D) ; P(y) \psi_{b v}(y)=0\right.$ and $\left.P^{\perp}(y) \psi_{b v}^{\prime}(y)+L(y) P^{\perp}(y) \psi_{b v}(y)=0\right\}$.

A basic spectral property of the operators is the following.
Theorem [JB, Kerner 2013]
The operator $\left(-\Delta_{2}, \mathcal{D}_{2}(P, L)\right)$ has a compact resolvent. In particular, it possesses a discrete spectrum and the eigenvalue count follows a Weyl law,

$$
\#\left\{n \in \mathbb{N} ; \lambda_{n} \leq \lambda\right\} \sim \frac{\mathcal{L}^{2}}{4 \pi} \lambda, \quad \lambda \rightarrow \infty
$$

Identical particles

For two particles the bosonic/fermionic projector is

$$
\left(\Pi_{B / F} \psi\right)(x, y)=\frac{1}{2}(\psi(x, y) \pm \psi(y, x))
$$

- It can be arranged that $\left[H_{2}, \Pi_{B}\right]=0$, hence the operator has a bosonic version $H_{2, B}$.
- There is an immediate generalisation to arbitrary compact graphs.
- The operator can be promoted to an operator for N bosons,

$$
H_{N, B}=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{i<j} \alpha\left(x_{i}\right) \delta\left(x_{i}-x_{j}\right)
$$

This yields an extension of the Lieb-Liniger model from a circle to a metric graph.

Hardcore-limit $\alpha \rightarrow \infty$: Dirichlet conditions at $x_{i}=x_{j}$ (Tonks-Girardeau gas).

Solvable models

(This is recent work with George Garforth: arXiv:1609.00828v1)
For one particle, eigenfunctions are of the form

$$
a e^{i k x}+b e^{-i k x}
$$

on each edge. This is used to produce the finite-dimensional secular determinant. For two-particles, the general form is

$$
\int_{\mathbb{R}^{2}} a\left(k_{1}, k_{2}\right) e^{i\left(k_{1} x_{1}+k_{2} x_{2}\right)} d k_{1} d k_{2}
$$

However, in some cases a Bethe ansatz for the eigenfunctions,

$$
\sum_{k_{1}, k_{2}} A\left(k_{1}, k_{2}\right) e^{i\left(k_{1} x_{1}+k_{2} x_{2}\right)}
$$

(finite sum) will be possible. Such cases are called solvable.

Early examples are:

- δ-interacting particles on a circle: Lieb, Liniger (1963)
- δ-interacting particles on an interval: Yang (1967), Gaudin (1971)
- $\tilde{\delta}$-interacting particles on a star graph with two infinite edges Caudrelier, Crampe (2007)

The $\tilde{\delta}$-interaction on the star graph with two infinite edges is formally given as

$$
\alpha\left(\delta\left(x_{1}-x_{2}\right)+\delta\left(x_{1}+x_{2}\right)\right) .
$$

It acts whenever $x_{1}= \pm x_{2}$, i.e., when both particles are located the same distance away from the vertex, either on the same or on different edges.

A similar interaction can be defined on any graph and can be made rigorous in close analogy to the δ-interactions. When e, e^{\prime} are two edges emanating from the same vertex, then

$$
\psi_{e e^{\prime}}^{+}=\psi_{e^{\prime} e}^{-}
$$

across $x=y$, and

$$
\partial_{x} \psi_{e e^{\prime}}^{+}-\partial_{y} \psi_{e e^{\prime}}^{+}-\alpha \psi_{e e^{\prime}}^{+}=\partial_{x} \psi_{e^{\prime} e}^{-}-\partial_{y} \psi_{e^{\prime} e}^{-}
$$

The Bethe ansatz then is of the form
where \mathcal{W}_{2} is a finite group (of order 8) generated by I, T, R with relations

1. $T T=I$,
2. $R R=I$,
3. $T R T R=R T R T$.

We applied this in two examples:

- Equilateral star graph with DFT central scattering matrix
- Tetrahedron with rationally independent edge lengths

In both types of examples we found a secular equation,

$$
\operatorname{det}\left(\mathbb{1}-U\left(k_{1}, k_{2}\right)\right)=0
$$

for the eigenvalues $k_{1}^{2}+k^{2}$, where

$$
U\left(k_{1}, k_{2}\right)=E\left(k_{2}\right) Y\left(k_{2}-k_{1}\right)\left(\mathbb{1}_{2} \otimes S\left(k_{2}\right) \otimes \mathbb{1}_{2 E}\right) Y\left(k_{1}+k_{2}\right)
$$

and

$$
\begin{aligned}
& Y(k)=\frac{1}{k+i \alpha}\left(\begin{array}{cc}
-i \alpha & k \\
k & -i \alpha
\end{array}\right) \otimes \boldsymbol{\alpha}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes\left(\mathbb{1}_{E^{2}}-\boldsymbol{\alpha}\right) \mathbb{T}_{E^{2}} \\
& E(k)=\mathbb{1}_{4 E} \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes \boldsymbol{e}^{i k \boldsymbol{l}}
\end{aligned}
$$

$\mathbb{T}_{E^{2}}$ is a permutation matrix.

Abbildung 1: Eigenvalue counting function Abbildung 2: Eigenvalue counting function $N(E)$ for two bosons on a 9-edge equilate- $N(E)$ for two bosons on a tetrahedron ral star

Abbildung 3: Integrated level spacings distributions for systems of two bosons on a tetrahedron (first 3000 eigenvalues).

