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Introduction In�mizers Supremizers Summary & Conjectures

Eigenvalue optimization problems (for domains)

Fixing the topology, total volume and boundary conditions,

we seek for the shape which maximizes\minimizes an eigenvalue.

Simply connected domains

Faber-Krahn [Dirichlet conditions]: the ball minimizes λ1 (no sense maximizing).

Krahn-Szegö [Dirichlet conditions]: No minimizer for λ2,
but union of two balls serves as an in�mizer.

Szegö-Weinberger [Neumann conditions]: the ball maximizes λ1 (no sense minimizing).

Multi connected domains

Payne-Weinberger: Planar domains with a single hole,

Dirichlet on outer boundary and Neumann on inner.

Fixing total area and length of outer boundary - annulus (concentric circles) maximizes λ1.

More works by: Ashbaugh-Chatelain, Ashbaugh-Benguria, Exner-Mantile, Flucher,

Harrell-Kröger-Kurata, Hersch, Kolokolnikov-Titcombe-Ward, and more...
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Introduction In�mizers Supremizers Summary & Conjectures

From a Discrete graph to a Quantum graph

G a discrete graph with E < ∞ edges and V < ∞ vertices. Space of edge lengths:

LG := {(l1, . . . , lE ) ∈ RE
∣∣∣ ∑E

e=1 le = 1 and ∀e, le > 0

}
Γ(G; l ) denotes the metric graph obtained from G with edge lengths l ∈ LG.

Namely, the eth edge corresponds to an interval [0, le ]
Consider the following eigenvalue equation on each [0, le ]: − d

2

dx2e
f
∣∣
e

= k2f
∣∣
e
,

with the Neumann (Kirchho�) vertex conditions:

Continuity ∀e1, e2 ∼ v ; f |e1 (v ) = f |e2 (v )
Vanishing sum of derivatives

∑
e∼v

d

dxe
f

∣∣∣∣
e

(v ) = 0

The spectrum,
{
k2n
}∞
n=1 is discrete and bounded from below:

0 = k0 < k1 ≤ k2 ≤ . . .

We call k1 the spectral gap of the graph.
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Spectral gap dependence on edge lengths

LG := {(l1, . . . , lE ) ∈ RE
∣∣∣ ∑E

e=1 le = 1 and ∀e, le > 0

}
.Γ(G; l ) denotes the metric graph obtained from G with edge lengths l ∈ LG.

Spectral gap is denoted k1 [Γ(G; l )]. Note: k1 [Γ(G; l )] is continuous in l ,

which leads to consider also l ∈ ∂L G (some edge lengths vanish),

possibly changing the topology of Γ(G; l ).
De�nition 1.

• Γ(G; l∗) a maximizer of G if l∗ ∈ LG and k1 [Γ (G; l∗)] ≥ k1 [Γ (G; l )] , ∀l ∈ LG.

• Γ(G; l∗) a supremizer of G if l∗ ∈ L G and k1 [Γ (G; l∗)] ≥ k1 [Γ (G; l )] , ∀l ∈ L G.

• Same de�nitions for minimizer and in�mizer.

• Supremizer and in�mizer always exist.

What about maximizer\minimizer?

• Which graphs are spectral gap optimizers? ?
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Quantum Graphs which Optimize the Spectral Gap

• Supremizer and in�mizer always exist. What about maximizer\minimizer?

• Which graphs are spectral gap optimizers?

A few examples

l1
l2

l3
l4

l5

Star graph with E ≥ 2 edges

In�mum (no minimum): k1(1, 0, . . . 0) = π,
Maximum: k1(1/E , . . . , 1/E) = E

2
π (equilateral star)

(Recall: total edge length = 1)

l1

l2
l3

k1(l1, l2, l3)

Flower graph with E ≥ 2 edges

In�mum (no minimum): k1(1, 0, . . . 0) = 2π,
Maximum: k1(1/E , . . . , 1/E) = Eπ (equilateral �ower)

[Kennedy, Kurasov, Malenová, Mugnolo '16]
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Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)

1
8

1
4

1
8

1
4

1
4

Stower (Flétoile) graph with Ep petals, El leaves

In�mum (no minimum): k1(0 . . . , 0, 1) = π,
Maximum: k1(l ) = (Ep + El

2
)π,

where l = 1

2Ep+El
(2, . . . , 2︸ ︷︷ ︸

Ep

, 1, . . . , 1︸ ︷︷ ︸
El

) (�equilateral� stower),

assuming Ep + El ≥ 2 and (Ep ,El ) /∈ (1, 1). [Shown in future slide].

This generales stars and �owers results.

Ep = 2

El = 1

In�mum: k1(0, 0, 1) = π,
Maximum: k1( 25 , 25 , 15 ) = 2

1

2
π

Ep = 1

El = 2

Continuous family of in�ma: k1(0, t, 1− t) = π,
Continuous family of maxima: k1(1− 2t, t, t) = 2π



Introduction In�mizers Supremizers Summary & Conjectures

Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)
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Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)
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Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)

l1
l2

l3

l4

k1(l1, l2, l3)

Mandarin graph with E edges

In�mum (no minimum): k1(1, 0, . . . , 0) = 2π,
Maximum: k1(1/E , . . . , 1/E) = Eπ.
[Kennedy, Kurasov, Malenová, Mugnolo '16]

Length dependence �gures - courtesy of Lior Alon

• Which graphs have not only supremizer\in�mizer, but also maximizer\minimizer?

• Which graphs are spectral gap optimizers?
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Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)
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Lower bounds - Known results

k1 [Γ] ≥ π
with equality i� Γ is a single edge [Nicaise '87; Friedlander '05; Kurasov, Naboko '14].

If Γ has all vertex degrees even then

k1 [Γ] ≥ 2π, [Kurasov, Naboko '14]

with a single loop achieving equality (for example).

Remaining questions:

• What about other topologies?

• What are all possible minimizers\in�mizers?
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In�mizers - Solution

A bridge is an edge whose removal dissconnects the graph.

Theorem 2 (Band, Lévy).

1. Let G be a graph with a bridge. Then

1.1 The in�mal spectral gap of G equals π.
1.2 The unique in�mizer is the unit interval.

2. Let G be a bridgeless graph. Then

2.1 The in�mal spectral gap of G equals 2π.
2.2 Any in�mizer is a symmetric necklace graph.

• When is there a minimum?

• Proof idea - rearrangment method on graphs.

l1
l2

l3
l4

l1
l2 l3

l4

Figure: symmetric necklace graph
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Upper bounds - Known results

• Global bound

k1 [Γ] ≤ Eπ,

equality if and only if Γ is an equilateral mandarin or equilateral �ower

[Kennedy, Kurasov, Malenová, Mugnolo '16].

This fully answers optimization for �owers and mandarins:

supremizers (also maximizers) are equilateral.

• If Γ is a tree then

k1 [Γ] ≤ E

2
π,

equality if and only if Γ is an equilateral star [Rohleder '16].

This fully answers optimization for trees: supremizers are stars.
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Upper bounds - Further progress

Proposition 3 (Band, Lévy).

If Γ is a tree with El leaves then k1 [Γ] ≤ El

2
π.

Proof idea.

d (Γ) := max{d (x , y )∣∣x , y ∈ Γ} graph diameter.

Combine k1[Γ] ≤ π
d (Γ) with d (Γ) ≥ 2

El
(the latter true for trees).

Proposition 4 (Band, Lévy).

Let G be a graph with E edges, out of which El are leaves.

If (E ,El ) /∈ {(1, 1) , (1, 0) , (2, 1)} then ∀ l ∈ LG, k1 [Γ (G; l )] ≤ π (E − El

2

)
.

Assuming (E ,El ) /∈ {(2, 0) , (3, 2)} equality above implies Γ (G; l ) is

either an equilateral mandarin (El = 0) or an equilateral stower (El ≥ 0).

Proof idea.

Take Γ and attach two vertices to obtain Γ′ (illegal move in our game). Get k1(Γ) ≤ k1(Γ′).
Repeatedly attach all inner vertices to obtain a stower with El leaves and E − El petals.

Use bound on stowers: k1 [Γ] ≤ π (E − El
2

)
[to appear in a future slide]
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If (E ,El ) /∈ {(1, 1) , (1, 0) , (2, 1)} then ∀ l ∈ LG, k1 [Γ (G; l )] ≤ π (E − El

2

)
.

Assuming (E ,El ) /∈ {(2, 0) , (3, 2)} equality above implies Γ (G; l ) is

either an equilateral mandarin (El = 0) or an equilateral stower (El ≥ 0).

Proof idea.

Take Γ and attach two vertices to obtain Γ′ (illegal move in our game). Get k1(Γ) ≤ k1(Γ′).
Repeatedly attach all inner vertices to obtain a stower with El leaves and E − El petals.

Use bound on stowers: k1 [Γ] ≤ π (E − El
2

)
[to appear in a future slide]
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Spectral gap as a simple eigenvalue - Critical points

Try to �nd supremizers by seeking for local critical points in LG.

Derivatives with respect to edge lengths may be calculated for simple eigenvalues.

Theorem 5 (Band, Lévy).

Let G be a discrete graph and l ∈ LG.

Assume that Γ(G; l ) is a supremizer of G with simple spectral gap k1 [Γ(G; l )].
Then Γ(G; l ) is not a unique supremizer:

there exists l∗ ∈ L G s.t. Γ (G; l∗) is an equilateral mandarin and

k1 [Γ(G; l )] = k1 [Γ(G; l∗)] .
Proof ingredients.

• A supremizer is a critical point of some LĜ (Ĝ maybe di�erent than G).

• ∀e ∂
∂le
(
k2
) = − (f ′2 + k2f 2

) ∣∣
e
where f eigenfunction which corresponds to k.

• This implies restrictions on eigenfunction derivatives.

• Courant nodal domain theorem - f has exactly two nodal domains.
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Gluing graphs - Vertex connectivity one

Let G1, G2 be discrete graphs, and vi (i = 1, 2) be a vertex of Gi .
Let G be the graph obtained by identifying (gluing) v1 and v2.

If we know the supremizers Γ1, Γ2 of G1, G2,
can we tell the supremizer of G?

G1 G2

v1 v2

Yes (under some conditions on k1(Γ1), k1(Γ2) )
For brevity, skip here the theorem and move on to its corollaries.

Corollary 6.

Let G1, G2 be discrete graphs.
Let G obtained by identifying two non-leaf vertices v1 and v2.

If the (unique) supremizer of Gi is the �equilateral� stower

with E
(i )
p petals and E

(i )
l leaves, such that E

(i )
p + E

(i )
l ≥ 2,

then the (unique) supremizer of G is an �equilateral� stower

with E
(1)
p + E

(2)
p petals and E

(1)
l + E

(2)
l leaves.
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Gluing graphs - Corollaries

Corollary 7.

Let G be a stower with Ep + El ≥ 2 and (Ep,El ) 6= (1, 1). Then a maximizer is

the �equilateral� stower graph with spectral gap π
(
Ep + El

2

)
.

This maximizer is unique for
(
Ep,El

)
/∈ {(2, 0) , (1, 2)}.

Proof idea.
Prove the statement for �small� stowers. Then glue them to construct any stower.

Recall

Proposition 4:

Let G be a graph with E edges, out of which El are leaves.

If (E ,El ) /∈ {(1, 1) , (1, 0) , (2, 1)} then ∀ l ∈ LG, k1 [Γ (G; l )] ≤ π (E − El
2

)
.

Assuming (E ,El ) /∈ {(2, 0) , (3, 2)} equality above implies Γ (G; l ) is
either an equilateral mandarin (El = 0) or an equilateral stower (El ≥ 0).

We use Corollary 7 in its proof.
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Summary

• Optimization problem fully solved for in�mizers\minimizers.

• Supremizers

I Improved upper bounds by conditioning on number of leaves,

k1 ≤ π
(
E − El

2

)
(global) and k1 ≤ π El

2
(for trees).

I Simple spectral gaps are never better than that of the mandarin.

I Construct supremizer by gluing known supremizers.
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Summary

Supremizer candidates are stowers and mandarins (are there any others?)

⇒ lower bounds on supremal spectral gap

Getting to a stower gives π
(
β + El

2

)
,

where β := E − V + 1 is the graph's �rst Betti number.

−→
β = 5

El = 3

Getting to a mandarin:

Partition vertices V = V1 ∪ V2.

E (V1,V2) := # of edges connectingV1 to V2.

Maximal spectral gap among all mandarins is

π ·maxV1,V2 E (V1,V2). (Cheeger-like constant)

−→
E (V1 ,V2) = 4

−→
E (V1 ,V2) = 5

Compare π
(
β + El

2

)
(stower) with π ·maxV1 ,V2 E (V1,V2) (mandarin).

E (V1,V2) = β + 1− (β1 + β2), where βi is the Betti number of Vi graph.

If El ≤ 1 then mandarin wins if and only if we �nd β1 = β2 = 0.

If El ≥ 2 then mandarin never wins (possibility for a tie).

Leads to conjectures....
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Conjectures

• Supremizer is either a mandarin or a stower.

• Supremum is obtained when order of symmetry group is maximized.

• Supremum is obtained when multiplicity of spectral gap is maximized.



Introduction In�mizers Supremizers Summary & Conjectures

Conjectures

• Supremizer is either a mandarin or a stower.

• Supremum is obtained when order of symmetry group is maximized.

• Supremum is obtained when multiplicity of spectral gap is maximized.



Introduction In�mizers Supremizers Summary & Conjectures

Conjectures

• Supremizer is either a mandarin or a stower.

• Supremum is obtained when order of symmetry group is maximized.

• Supremum is obtained when multiplicity of spectral gap is maximized.



Introduction In�mizers Supremizers Summary & Conjectures

Quantum Graphs which Optimize the Spectral Gap

Ram Band

Technion - Israel Institute of Technology

Joint work with Guillaume Lévy, Université Pierre et Marie Curie, Paris
(arXiv:1608.00520)

QMath 13, GeorgiaTech, Atlanta - October 2016


	Introduction
	Infimizers
	Supremizers
	Upper bounds
	Spectral gap as a simple eigenvalue
	Gluing graphs

	Summary & Conjectures

