

#### Ram Band

#### Technion - Israel Institute of Technology

Joint work with Guillaume Lévy, Université Pierre et Marie Curie, Paris (arXiv:1608.00520)

QMath 13, GeorgiaTech, Atlanta - October 2016

#### Fixing the topology, total volume and boundary conditions, we seek for the shape which maximizes\minimizes an eigenvalue.

#### Simply connected domains

Faber-Krahn [Dirichlet conditions]: the ball minimizes  $\lambda_1$  (no sense maximizing). Krahn-Szegö [Dirichlet conditions]: No minimizer for  $\lambda_2$ , but union of two balls serves as an *infimizer*.

#### Multi connected domains

Payne-Weinberger: Planar domains with a single hole,

Dirichlet on outer boundary and Neumann on inner.

Fixing total area and length of outer boundary - annulus (concentric circles) maximizes  $\lambda_1$ .

Fixing the topology, total volume and boundary conditions, we seek for the shape which maximizes\minimizes an eigenvalue.

#### Simply connected domains

#### Faber-Krahn [Dirichlet conditions]: the ball minimizes $\lambda_1$ (no sense maximizing).

Krahn-Szegö [Dirichlet conditions]: No minimizer for  $\lambda_2$ ,

but union of two balls serves as an *infimizer*.

Szegö-Weinberger [Neumann conditions]: the ball maximizes  $\lambda_1$  (no sense minimizing).

#### Multi connected domains

Payne-Weinberger: Planar domains with a single hole,

Dirichlet on outer boundary and Neumann on inner.

Fixing total area and length of outer boundary - annulus (concentric circles) maximizes  $\lambda_1$ .

Fixing the topology, total volume and boundary conditions, we seek for the shape which maximizes\minimizes an eigenvalue.

#### Simply connected domains

Faber-Krahn [Dirichlet conditions]: the ball minimizes  $\lambda_1$  (no sense maximizing). Krahn-Szegö [Dirichlet conditions]: No minimizer for  $\lambda_2$ , but union of two balls serves as an infimizer.

Szegö-Weinberger [Neumann conditions]: the ball maximizes  $\lambda_1$  (no sense minimizing).

#### Multi connected domains

Payne-Weinberger: Planar domains with a single hole,

Dirichlet on outer boundary and Neumann on inner.

Fixing total area and length of outer boundary - annulus (concentric circles) maximizes  $\lambda_1$ .

Fixing the topology, total volume and boundary conditions, we seek for the shape which maximizes\minimizes an eigenvalue.

#### Simply connected domains

Faber-Krahn [Dirichlet conditions]: the ball minimizes  $\lambda_1$  (no sense maximizing). Krahn-Szegö [Dirichlet conditions]: No minimizer for  $\lambda_2$ , but union of two balls serves as an *infimizer*. Szegö-Weinberger [Neumann conditions]: the ball maximizes  $\lambda_1$  (no sense minimizing).

#### Multi connected domains

Payne-Weinberger: Planar domains with a single hole,

Dirichlet on outer boundary and Neumann on inner.

Fixing total area and length of outer boundary - annulus (concentric circles) maximizes  $\lambda_1$ .

Fixing the topology, total volume and boundary conditions, we seek for the shape which maximizes\minimizes an eigenvalue.

#### Simply connected domains

Faber-Krahn [Dirichlet conditions]: the ball minimizes  $\lambda_1$  (no sense maximizing). Krahn-Szegö [Dirichlet conditions]: No minimizer for  $\lambda_2$ , but union of two balls serves as an *infimizer*. Szegö-Weinberger [Neumann conditions]: the ball maximizes  $\lambda_1$  (no sense minimizing).

#### Multi connected domains

Payne-Weinberger: Planar domains with a single hole,

Dirichlet on outer boundary and Neumann on inner.

Fixing total area and length of outer boundary - annulus (concentric circles) maximizes  $\lambda_1$ .

|  | In | tr |  | d | u |  |  |  |  |
|--|----|----|--|---|---|--|--|--|--|
|--|----|----|--|---|---|--|--|--|--|

Supremizers

Summary & Conjectures

# Outline

# Introduction Infimizers Supremizers Upper bounds Spectral gap as a simple eigenvalue Gluing graphs

Summary & Conjectures

# From a Discrete graph to a Quantum graph

 ${\mathcal G}$  a discrete graph with  $E<\infty$  edges and  $V<\infty$  vertices. Space of edge lengths:

$$\mathscr{L}_{\mathcal{G}} := \left\{ (l_1, \dots, l_E) \in \mathbb{R}^E \ \Big| \ \sum_{e=1}^E l_e = 1 \text{ and } \forall e, \ l_e > 0 \right\}$$

 $\label{eq:G} \mathsf{\Gamma}(\mathcal{G}; \ \underline{\mathit{l}}) \text{ denotes the metric graph obtained from } \mathcal{G} \text{ with edge lengths } \underline{\mathit{l}} \in \mathscr{L}_{\mathcal{G}}.$ 

Namely, the  $e^{\text{th}}$  edge corresponds to an interval  $[0, I_e]$ 

Consider the following eigenvalue equation on each  $[0, l_e]$ :  $-\frac{d^2}{dx_e^2}f|_e = k^2 f|_e$ , with the Neumann (Kirchhoff) vertex conditions:

Continuity 
$$\forall e_1, e_2 \sim v; f|_{e_1}(v) = f|_{e_2}(v)$$
  
Vanishing sum of derivatives  $\sum_{e \sim v} \frac{\mathrm{d}}{\mathrm{d}x_e} f\Big|_e(v) = 0$ 

The spectrum,  $\{k_n^2\}_{n=1}^{\infty}$  is discrete and bounded from below:

$$0 = k_0 < k_1 \le k_2 \le \ldots$$

We call  $k_1$  the spectral gap of the graph.

# From a Discrete graph to a Quantum graph

 ${\mathcal G}$  a discrete graph with  $E<\infty$  edges and  $V<\infty$  vertices. Space of edge lengths:

$$\mathscr{L}_{\mathcal{G}} := \left\{ (I_1, \dots, I_E) \in \mathbb{R}^E \ \Big| \ \sum_{e=1}^E I_e = 1 \text{ and } \forall e, \ I_e > 0 \right\}$$

 $\Gamma(\mathcal{G}; \underline{l})$  denotes the metric graph obtained from  $\mathcal{G}$  with edge lengths  $\underline{l} \in \mathscr{L}_{\mathcal{G}}$ . Namely, the  $e^{\text{th}}$  edge corresponds to an interval  $[0, l_e]$ 

Consider the following eigenvalue equation on each  $[0, I_e]$ :  $-\frac{\mathrm{d}^2}{\mathrm{d}x_e^2}f|_e = k^2 f|_e$ , with the Neumann (Kirchhoff) vertex conditions:

 $\begin{array}{ll} \text{Continuity} & \forall e_1, e_2 \sim v \, ; \, \left. f \right|_{e_1} (v) = \left. f \right|_{e_2} (v) \\ \text{Vanishing sum of derivatives} & \left. \sum_{e \sim v} \frac{\mathrm{d}}{\mathrm{d}x_e} f \right|_e (v) = 0 \end{array}$ 

The spectrum,  $\{k_n^2\}_{n=1}^{\infty}$  is discrete and bounded from below:

$$0 = k_0 < k_1 \leq k_2 \leq \ldots$$

We call  $k_1$  the spectral gap of the graph.

# From a Discrete graph to a Quantum graph

 ${\mathcal G}$  a discrete graph with  $E<\infty$  edges and  $V<\infty$  vertices. Space of edge lengths:

$$\mathscr{L}_{\mathcal{G}} := \left\{ (I_1, \dots, I_E) \in \mathbb{R}^E \ \Big| \ \sum_{e=1}^E I_e = 1 \text{ and } \forall e, \ I_e > 0 \right\}$$

 $\Gamma(\mathcal{G}; \underline{l})$  denotes the metric graph obtained from  $\mathcal{G}$  with edge lengths  $\underline{l} \in \mathscr{L}_{\mathcal{G}}$ . Namely, the  $e^{\text{th}}$  edge corresponds to an interval  $[0, l_e]$ 

Consider the following eigenvalue equation on each  $[0, I_e]$ :  $-\frac{d^2}{dx_e^2}f|_e = k^2 f|_e$ , with the Neumann (Kirchhoff) vertex conditions:

$$\begin{array}{lll} & \text{Continuity} & \forall e_1, e_2 \sim v \; ; \; \left. f \right|_{e_1} (v) = \left. f \right|_{e_2} (v) \\ & \text{Vanishing sum of derivatives} & \left. \sum_{e \sim v} \frac{\mathrm{d}}{\mathrm{d}x_e} f \right|_e (v) = 0 \\ \end{array}$$

The spectrum,  $\{k_n^2\}_{n=1}^{\infty}$  is discrete and bounded from below:

$$0 = k_0 < \frac{k_1}{2} \leq \frac{k_2}{2} \leq \dots$$

We call  $k_1$  the spectral gap of the graph.

Spectral gap dependence on edge lengths

 $\mathscr{L}_{\mathcal{G}} := \Big\{ (I_1, \ldots, I_E) \in \mathbb{R}^E \ \Big| \ \sum_{e=1}^E I_e = 1 \ \text{and} \ \forall e, \ I_e > 0 \Big\}.$ 

 $\Gamma(\mathcal{G}; \underline{I})$  denotes the metric graph obtained from  $\mathcal{G}$  with edge lengths  $\underline{I} \in \mathscr{L}_{\mathcal{G}}$ .

Spectral gap is denoted  $k_1[\Gamma(\mathcal{G}; \underline{l})]$ . <u>Note</u>:  $k_1[\Gamma(\mathcal{G}; \underline{l})]$  is continuous in  $\underline{l}$ ,

which leads to consider also  $\underline{l} \in \partial \mathscr{L}_{\mathcal{G}}$  (some edge lengths vanish),

possibly changing the topology of  $\Gamma(\mathcal{G}; \underline{I})$ .

#### Definition 1.

- $\Gamma(\mathcal{G}; \underline{l}^*)$  a maximizer of  $\mathcal{G}$  if  $\underline{l}^* \in \mathscr{L}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \ge k_1[\Gamma(\mathcal{G}; \underline{l})], \forall \underline{l} \in \mathscr{L}_{\mathcal{G}}$ .
- $\Gamma(\mathcal{G}; \underline{l}^*)$  a supremizer of  $\mathcal{G}$  if  $\underline{l}^* \in \overline{\mathscr{L}}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \ge k_1[\Gamma(\mathcal{G}; \underline{l})], \ \forall \underline{l} \in \overline{\mathscr{L}}_{\mathcal{G}}.$
- Same definitions for minimizer and infimizer.
- Supremizer and infimizer always exist. What about maximizer\minimizer?
- Which graphs are spectral gap optimizers?



Introduction

#### Infimizers

Supremizer

# Spectral gap dependence on edge lengths

 $\begin{aligned} \mathscr{L}_{\mathcal{G}} &:= \left\{ (I_1, \ldots, I_E) \in \mathbb{R}^E \; \middle| \; \sum_{e=1}^E I_e = 1 \text{ and } \forall e, \; I_e > 0 \right\}. \\ & \Gamma(\mathcal{G}; \; \underline{I}) \text{ denotes the metric graph obtained from } \mathcal{G} \text{ with edge lengths } \underline{I} \in \mathscr{L}_{\mathcal{G}}. \end{aligned} \\ & \text{Spectral gap is denoted } k_1[\Gamma(\mathcal{G}; \; \underline{I})]. \quad \underline{\text{Note:}} \; k_1[\Gamma(\mathcal{G}; \; \underline{I})] \text{ is continuous in } \underline{I}, \end{aligned} \\ & \text{which leads to consider also } \underline{I} \in \partial \mathscr{L}_{\mathcal{G}} \text{ (some edge lengths vanish),} \end{aligned} \\ & \text{possibly changing the topology of } \Gamma(\mathcal{G}; \; \underline{I}). \end{aligned}$ 



#### Definition 1

- $\Gamma(\mathcal{G}; \underline{l}^*)$  a maximizer of  $\mathcal{G}$  if  $\underline{l}^* \in \mathscr{L}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \ge k_1[\Gamma(\mathcal{G}; \underline{l})], \forall \underline{l} \in \mathscr{L}_{\mathcal{G}}$ .
- $\Gamma(\mathcal{G}; \underline{l}^*)$  a supremizer of  $\mathcal{G}$  if  $\underline{l}^* \in \overline{\mathscr{L}}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \ge k_1[\Gamma(\mathcal{G}; \underline{l})], \ \forall \underline{l} \in \overline{\mathscr{L}}_{\mathcal{G}}.$
- Same definitions for minimizer and infimizer.
- Supremizer and infimizer always exist. What about maximizer\minimizer?
- Which graphs are spectral gap optimizers?



Introduction

# Spectral gap dependence on edge lengths

 $\mathscr{L}_{\mathcal{G}} := \left\{ (I_1, \dots, I_E) \in \mathbb{R}^E \mid \sum_{e=1}^E I_e = 1 \text{ and } \forall e, \ I_e > 0 \right\}.$  $\Gamma(\mathcal{G}; I)$  denotes the metric graph obtained from  $\mathcal{G}$  with edge lengths  $I \in \mathscr{L}_{\mathcal{G}}$ . Spectral gap is denoted  $k_1[\Gamma(\mathcal{G}; \underline{l})]$ . Note:  $k_1[\Gamma(\mathcal{G}; \underline{l})]$  is continuous in  $\underline{l}$ , which leads to consider also  $\underline{I} \in \partial \mathscr{L}_{\mathcal{G}}$  (some edge lengths vanish), possibly changing the topology of  $\Gamma(\mathcal{G}; I)$ .

#### Definition 1.

- $\Gamma(\mathcal{G}; \underline{l}^*)$  a maximizer of  $\mathcal{G}$  if  $\underline{l}^* \in \mathscr{L}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \geq k_1[\Gamma(\mathcal{G}; \underline{l})], \forall \underline{l} \in \mathscr{L}_{\mathcal{G}}$ .
- $\Gamma(\mathcal{G}; \underline{l}^*)$  a supremizer of  $\mathcal{G}$  if  $\underline{l}^* \in \overline{\mathscr{L}}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \geq k_1[\Gamma(\mathcal{G}; \underline{l})], \forall \underline{l} \in \overline{\mathscr{L}}_{\mathcal{G}}$ .
- Same definitions for minimizer and infimizer.







# Spectral gap dependence on edge lengths

 $\begin{aligned} \mathscr{L}_{\mathcal{G}} &:= \left\{ (I_1, \ldots, I_E) \in \mathbb{R}^E \; \middle| \; \sum_{e=1}^E I_e = 1 \text{ and } \forall e, \; I_e > 0 \right\}. \\ & \Gamma(\mathcal{G}; \; \underline{I}) \text{ denotes the metric graph obtained from } \mathcal{G} \text{ with edge lengths } \underline{I} \in \mathscr{L}_{\mathcal{G}}. \end{aligned} \\ & \text{Spectral gap is denoted } k_1[\Gamma(\mathcal{G}; \; \underline{I})]. \quad \underline{\text{Note:}} \; k_1[\Gamma(\mathcal{G}; \; \underline{I})] \text{ is continuous in } \underline{I}, \end{aligned} \\ & \text{which leads to consider also } \underline{I} \in \partial \mathscr{L}_{\mathcal{G}} \text{ (some edge lengths vanish)}, \end{aligned}$ 

#### Definition 1.

- $\Gamma(\mathcal{G}; \underline{l}^*)$  a maximizer of  $\mathcal{G}$  if  $\underline{l}^* \in \mathscr{L}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \ge k_1[\Gamma(\mathcal{G}; \underline{l})], \forall \underline{l} \in \mathscr{L}_{\mathcal{G}}$ .
- $\Gamma(\mathcal{G}; \underline{l}^*)$  a supremizer of  $\mathcal{G}$  if  $\underline{l}^* \in \overline{\mathscr{L}}_{\mathcal{G}}$  and  $k_1[\Gamma(\mathcal{G}; \underline{l}^*)] \ge k_1[\Gamma(\mathcal{G}; \underline{l})], \forall \underline{l} \in \overline{\mathscr{L}}_{\mathcal{G}}$ .
- Same definitions for minimizer and infimizer.
- Supremizer and infimizer always exist. What about maximizer\minimizer?
- Which graphs are spectral gap optimizers?







- Supremizer and infimizer always exist. What about maximizer/minimizer?
- Which graphs are spectral gap optimizers?

#### A few examples

**Star** graph with  $E \ge 2$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = \pi$ , Maximum:  $k_1(1/E, ..., 1/E) = \frac{E}{2}\pi$  (equilateral star) (Recall: total edge length = 1)

**Flower** graph with  $E \ge 2$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = 2\pi$ , Maximum:  $k_1(1/E, ..., 1/E) = E\pi$  (equilateral flower) [Kennedy, Kurasov, Malenová, Mugnolo '16]

- Supremizer and infimizer always exist. What about maximizer\minimizer?
- Which graphs are spectral gap optimizers?

A few examples



Star graph with  $E \ge 2$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = \pi$ , Maximum:  $k_1(1/E, ..., 1/E) = \frac{E}{2}\pi$  (equilateral star) (Recall: total edge length = 1)

**Flower** graph with  $E \ge 2$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = 2\pi$ , Maximum:  $k_1(1/E, ..., 1/E) = E\pi$  (equilateral flower) [Kennedy, Kurasov, Malenová, Mugnolo '16]

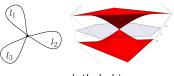
- Supremizer and infimizer always exist. What about maximizer\minimizer?
- Which graphs are spectral gap optimizers?

A few examples



Star graph with  $E\geq 2$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = \pi$ , Maximum:  $k_1(1/E, ..., 1/E) = \frac{E}{2}\pi$  (equilateral star) (Recall: total edge length = 1)



 $k_1(l_1, l_2, l_3)$ 

Flower graph with  $E \ge 2$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = 2\pi$ , Maximum:  $k_1(1/E, ..., 1/E) = E\pi$  (equilateral flower) [Kennedy, Kurasov, Malenová, Mugnolo '16]

#### A few examples (continued)



**Stower** (Flétoile) graph with  $E_p$  petals,  $E_l$  leaves Infimum (no minimum):  $k_1(0 \dots, 0, 1) = \pi$ , Maximum:  $k_1(\underline{l}) = (E_p + \frac{E_l}{2})\pi$ , where  $\underline{l} = \frac{1}{2E_p + E_l} \underbrace{(2, \dots, 2, 1, \dots, 1)}_{E_p}$  ("equilateral" stower), assuming  $E_p + E_l \ge 2$  and  $(E_p, E_l) \notin (1, 1)$ . [Shown in future slide]. This generales stars and flowers results.

#### A few examples (continued)

**Stower** (Flétoile) graph with  $E_p$  petals,  $E_l$  leaves Infimum (no minimum):  $k_1(0 \dots, 0, 1) = \pi$ , Maximum:  $k_1(\underline{l}) = (E_p + \frac{E_l}{2})\pi$ , where  $\underline{l} = \frac{1}{2E_p + E_l} \underbrace{(2, \dots, 2, 1, \dots, 1)}_{E_p}$  ("equilateral" stower), assuming  $E_p + E_l \ge 2$  and  $(E_p, E_l) \notin (1, 1)$ . [Shown in future slide]. This generales stars and flowers results.



Infimum:  $k_1(0, 0, 1) = \pi$ , Maximum:  $k_1(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}) = 2\frac{1}{2}\pi$ 

#### A few examples (continued)

**Stower** (Flétoile) graph with  $E_p$  petals,  $E_l$  leaves Infimum (no minimum):  $k_1(0 \dots, 0, 1) = \pi$ , Maximum:  $k_1(\underline{l}) = (E_p + \frac{E_l}{2})\pi$ , where  $\underline{l} = \frac{1}{2E_p + E_l} \underbrace{(2, \dots, 2, 1, \dots, 1)}_{E_p}$  ("equilateral" stower), assuming  $E_p + E_l \ge 2$  and  $(E_p, E_l) \notin (1, 1)$ . [Shown in future slide]. This generales stars and flowers results.



Infimum:  $k_1(0, 0, 1) = \pi$ , Maximum:  $k_1(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}) = 2\frac{1}{2}\pi$ 



Continuous family of infima:  $k_1(0, t, 1 - t) = \pi$ , Continuous family of maxima:  $k_1(1 - 2t, t, t) = 2\pi$ 

Supremizers

# Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)



 $k_1(l_1, l_2, l_3)$ 

Mandarin graph with E edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = 2\pi$ , Maximum:  $k_1(1/E, ..., 1/E) = E\pi$ . [Kennedy, Kurasov, Malenová, Mugnolo '16]

Length dependence figures - courtesy of Lior Alon

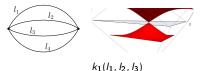
• Which graphs have not only supremizer/infimizer, but also maximizer/minimizer?

• Which graphs are spectral gap optimizers?

Supremizers

# Quantum Graphs which Optimize the Spectral Gap

A few examples (continued)



Mandarin graph with  ${\it E}$  edges

Infimum (no minimum):  $k_1(1, 0, ..., 0) = 2\pi$ , Maximum:  $k_1(1/E, ..., 1/E) = E\pi$ . [Kennedy, Kurasov, Malenová, Mugnolo '16]

Length dependence figures - courtesy of Lior Alon

- Which graphs have not only supremizer/infimizer, but also maximizer/minimizer?
- Which graphs are spectral gap optimizers?

Supremizers

Summary & Conjectures

# Lower bounds - Known results

#### $k_1[\Gamma] \geq \pi$

#### with equality iff $\Gamma$ is a single edge [Nicaise '87; Friedlander '05; Kurasov, Naboko '14].

If  $\Gamma$  has all vertex degrees even then

 $k_1[\Gamma] \ge 2\pi$ , [Kurasov, Naboko '14]

with a single loop achieving equality (for example).

Remaining questions:

- What about other topologies?
- What are all possible minimizers\infimizers?

Supremizers

Summary & Conjectures

#### Lower bounds - Known results

#### $k_1[\Gamma] \geq \pi$

with equality iff  $\Gamma$  is a single edge [Nicaise '87; Friedlander '05; Kurasov, Naboko '14].

If  $\Gamma$  has all vertex degrees even then

 $k_1[\Gamma] \ge 2\pi$ , [Kurasov, Naboko '14]

with a single loop achieving equality (for example).

Remaining questions:

- What about other topologies?
- What are all possible minimizers\infimizers?

Supremizers

Summary & Conjectures

#### Lower bounds - Known results

#### $k_1[\Gamma] \geq \pi$

with equality iff  $\Gamma$  is a single edge [Nicaise '87; Friedlander '05; Kurasov, Naboko '14].

If  $\Gamma$  has all vertex degrees even then

 $k_1[\Gamma] \ge 2\pi$ , [Kurasov, Naboko '14]

with a single loop achieving equality (for example).

Remaining questions:

- What about other topologies?
- What are all possible minimizers\infimizers?

Supremizers

Summary & Conjectures

# Infimizers - Solution

A **bridge** is an edge whose removal dissconnects the graph.

#### Theorem 2 (Band, Lévy).

Let G be a graph with a bridge. Then

 The infimal spectral gap of G equals π.
 The unique infimizer is the unit interval.

 Let G be a bridgeless graph. Then

 The infimal spectral gap of G equals 2π.
 Any infimizer is a symmetric necklace graph

# Infimizers - Solution

A **bridge** is an edge whose removal dissconnects the graph.

#### Theorem 2 (Band, Lévy).

- Let G be a graph with a bridge. Then
   The infimal spectral gap of G equals π.
   The unique infimizer is the unit interval.
- 2. Let  $\mathcal{G}$  be a bridgeless graph. Then
  - 2.1 The infimal spectral gap of  $\mathcal{G}$  equals  $2\pi$ .
  - 2.2 Any infimizer is a symmetric necklace graph.

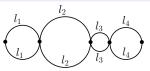


Figure: symmetric necklace graph

# Infimizers - Solution

A **bridge** is an edge whose removal dissconnects the graph.

#### Theorem 2 (Band, Lévy).

- Let G be a graph with a bridge. Then

   The infimal spectral gap of G equals π.
   The unique infimizer is the unit interval.

   Let G be a bridgeless graph. Then

   The infimite is the unit interval.
  - 2.1 The infimal spectral gap of  $\mathcal{G}$  equals  $2\pi$ .
  - 2.2 Any infimizer is a symmetric necklace graph.
- When is there a minimum?

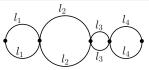


Figure: symmetric necklace graph

# Infimizers - Solution

A **bridge** is an edge whose removal dissconnects the graph.

#### Theorem 2 (Band, Lévy).

- Let G be a graph with a bridge. Then

   The infimal spectral gap of G equals π.
   The unique infimizer is the unit interval.

   Let G be a bridgeless graph. Then
  - 2.1 The infimal spectral gap of  $\mathcal{G}$  equals  $2\pi$ .
  - 2.2 Any infimizer is a symmetric necklace graph.
- When is there a minimum?
- Proof idea rearrangment method on graphs.

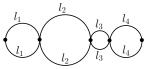


Figure: symmetric necklace graph

Supremizers

Summary & Conjectures

# Upper bounds - Known results

• Global bound

 $k_1[\Gamma] \leq E\pi$ ,

equality if and only if Γ is an equilateral mandarin or equilateral flower [Kennedy, Kurasov, Malenová, Mugnolo '16].

This fully answers optimization for flowers and mandarins: supremizers (also maximizers) are equilateral.

▶ If Γ is a tree then

$$k_1[\Gamma] \leq \frac{E}{2}\pi,$$

equality if and only if  $\Gamma$  is an equilateral star [Rohleder '16].

This fully answers optimization for trees: supremizers are stars.

Supremizers

Summary & Conjectures

# Upper bounds - Known results

• Global bound

 $k_1[\Gamma] \leq E\pi$ ,

equality if and only if Γ is an equilateral mandarin or equilateral flower [Kennedy, Kurasov, Malenová, Mugnolo '16].

This fully answers optimization for flowers and mandarins: supremizers (also maximizers) are equilateral.

• If  $\Gamma$  is a tree then

$$k_1[\Gamma] \leq \frac{E}{2}\pi,$$

equality if and only if  $\Gamma$  is an equilateral star [Rohleder '16].

This fully answers optimization for trees: supremizers are stars.

Supremizers

Summary & Conjectures

# Upper bounds - Further progress

# Proposition 3 (Band, Lévy).

If  $\Gamma$  is a tree with  $E_l$  leaves then  $k_1[\Gamma] \leq \frac{E_l}{2}\pi$ .

#### Proof idea.

 $d(\Gamma) := \max\{d(x, y) | x, y \in \Gamma\}$  graph diameter.

Combine  $k_1[\Gamma] \leq \frac{\pi}{d(\Gamma)}$  with  $d(\Gamma) \geq \frac{2}{E_l}$  (the latter true for trees).

#### Proposition 4 (Band, Lévy).

Let  $\mathcal{G}$  be a graph with  $\mathcal{E}$  edges, out of which  $\mathcal{E}_{l}$  are leaves. If  $(\mathcal{E}, \mathcal{E}_{l}) \notin \{(1, 1), (1, 0), (2, 1)\}$  then  $\forall \underline{l} \in \mathscr{L}_{\mathcal{G}}, \quad k_{1}[\Gamma(\mathcal{G}; \underline{l})] \leq \pi \left(\mathcal{E} - \frac{\mathcal{E}_{l}}{2}\right)$ . Assuming  $(\mathcal{E}, \mathcal{E}_{l}) \notin \{(2, 0), (3, 2)\}$  equality above implies  $\Gamma(\mathcal{G}; \underline{l})$  is either an equilateral mandarin  $(\mathcal{E}_{l} = 0)$  or an equilateral stower  $(\mathcal{E}_{l} \geq 0)$ .

Supremizers

# Upper bounds - Further progress

#### Proposition 3 (Band, Lévy).

If  $\Gamma$  is a tree with  $E_l$  leaves then  $k_1[\Gamma] \leq \frac{E_l}{2}\pi$ .

#### Proposition 4 (Band, Lévy).

Let  $\mathcal{G}$  be a graph with  $\mathcal{E}$  edges, out of which  $\mathcal{E}_{l}$  are leaves. If  $(\mathcal{E}, \mathcal{E}_{l}) \notin \{(1, 1), (1, 0), (2, 1)\}$  then  $\forall \underline{l} \in \mathscr{L}_{\mathcal{G}}, \quad k_{1}[\Gamma(\mathcal{G}; \underline{l})] \leq \pi \left(\mathcal{E} - \frac{\mathcal{E}_{l}}{2}\right)$ . Assuming  $(\mathcal{E}, \mathcal{E}_{l}) \notin \{(2, 0), (3, 2)\}$  equality above implies  $\Gamma(\mathcal{G}; \underline{l})$  is either an equilateral mandarin  $(\mathcal{E}_{l} = 0)$  or an equilateral stower  $(\mathcal{E}_{l} \geq 0)$ .

#### Proof idea.

Take  $\Gamma$  and attach two vertices to obtain  $\Gamma'$  (illegal move in our game). Get  $k_1(\Gamma) \leq k_1(\Gamma')$ . Repeatedly attach all inner vertices to obtain a stower with  $E_I$  leaves and  $E - E_I$  petals. Use bound on stowers:  $k_1[\Gamma] \leq \pi \left(E - \frac{E_I}{2}\right)$  [to appear in a future slide]

Supremizers

# Upper bounds - Further progress

#### Proposition 3 (Band, Lévy).

If  $\Gamma$  is a tree with  $E_l$  leaves then  $k_1[\Gamma] \leq \frac{E_l}{2}\pi$ .

#### Proposition 4 (Band, Lévy).

Let  $\mathcal{G}$  be a graph with  $\mathcal{E}$  edges, out of which  $\mathcal{E}_{l}$  are leaves. If  $(\mathcal{E}, \mathcal{E}_{l}) \notin \{(1, 1), (1, 0), (2, 1)\}$  then  $\forall \underline{l} \in \mathscr{L}_{\mathcal{G}}, \quad k_{1}[\Gamma(\mathcal{G}; \underline{l})] \leq \pi \left(\mathcal{E} - \frac{\mathcal{E}_{l}}{2}\right)$ . Assuming  $(\mathcal{E}, \mathcal{E}_{l}) \notin \{(2, 0), (3, 2)\}$  equality above implies  $\Gamma(\mathcal{G}; \underline{l})$  is either an equilateral mandarin  $(\mathcal{E}_{l} = 0)$  or an equilateral stower  $(\mathcal{E}_{l} > 0)$ .

#### Proof idea.

Take  $\Gamma$  and attach two vertices to obtain  $\Gamma'$  (illegal move in our game). Get  $k_1(\Gamma) \le k_1(\Gamma')$ . Repeatedly attach all inner vertices to obtain a stower with  $E_I$  leaves and  $E - E_I$  petals. Use bound on stowers:  $k_1[\Gamma] \le \pi \left(E - \frac{E_I}{2}\right)$  [to appear in a future slide]

# Spectral gap as a simple eigenvalue - Critical points

Try to find supremizers by seeking for local critical points in  $\mathscr{L}_{\mathcal{G}}.$ 

Derivatives with respect to edge lengths may be calculated for simple eigenvalues.

# Theorem 5 (Band, Lévy).

Let  $\mathcal{G}$  be a discrete graph and  $\underline{l} \in \mathcal{L}_{\mathcal{G}}$ . Assume that  $\Gamma(\mathcal{G}; \underline{l})$  is a supremizer of  $\mathcal{G}$  with simple spectral gap  $k_1[\Gamma(\mathcal{G}; \underline{l})]$ . Then  $\Gamma(\mathcal{G}; \underline{l})$  is not a unique supremizer: there exists  $\underline{l}^* \in \overline{\mathcal{L}}_{\mathcal{G}}$  s.t.  $\Gamma(\mathcal{G}; \underline{l}^*)$  is an equilateral mandarin and

 $k_1[\Gamma(\mathcal{G}; \underline{l})] = k_1[\Gamma(\mathcal{G}; \underline{l}^*)].$ 

# Proof ingredients.

- A supremizer is a critical point of some  $\mathscr{L}_{\hat{G}}$  ( $\hat{\mathcal{G}}$  maybe different than  $\mathcal{G}$ ).
- $\forall e \quad \frac{\partial}{\partial l_e} \left(k^2\right) = -\left(f'^2 + k^2 f^2\right)\Big|_e$  where f eigenfunction which corresponds to k.
- This implies restrictions on eigenfunction derivatives.
- Comment and all domains the same of here and the target and all domains

# Spectral gap as a simple eigenvalue - Critical points

Try to find supremizers by seeking for local critical points in  $\mathscr{L}_{\mathcal{G}}$ .

Derivatives with respect to edge lengths may be calculated for simple eigenvalues.

# Theorem 5 (Band, Lévy).

Let  $\mathcal{G}$  be a discrete graph and  $\underline{l} \in \mathscr{L}_{\mathcal{G}}$ . Assume that  $\Gamma(\mathcal{G}; \underline{l})$  is a supremizer of  $\mathcal{G}$  with simple spectral gap  $k_1[\Gamma(\mathcal{G}; \underline{l})]$ . Then  $\Gamma(\mathcal{G}; \underline{l})$  is not a unique supremizer: there exists  $\underline{l}^* \in \overline{\mathscr{L}}_{\mathcal{G}}$  s.t.  $\Gamma(\mathcal{G}; \underline{l}^*)$  is an equilateral mandarin and

 $k_1[\Gamma(\mathcal{G}; \underline{l})] = k_1[\Gamma(\mathcal{G}; \underline{l}^*)].$ 

#### Proof ingredients.

- A supremizer is a critical point of some  $\mathscr{L}_{\hat{G}}$  ( $\hat{\mathcal{G}}$  maybe different than  $\mathcal{G}$ ).
- $\forall e \; \frac{\partial}{\partial l_e} \left( k^2 \right) = -\left( f'^2 + k^2 f^2 \right) \Big|_e$  where f eigenfunction which corresponds to k.
- This implies restrictions on eigenfunction derivatives.
- Comment and all domains the same of here and the target and all domains

## Spectral gap as a simple eigenvalue - Critical points

## Theorem 5 (Band, Lévy).

Let  $\mathcal{G}$  be a discrete graph and  $\underline{l} \in \mathscr{L}_{\mathcal{G}}$ . Assume that  $\Gamma(\mathcal{G}; \underline{l})$  is a supremizer of  $\mathcal{G}$  with simple spectral gap  $k_1[\Gamma(\mathcal{G}; \underline{l})]$ . Then  $\Gamma(\mathcal{G}; \underline{l})$  is not a unique supremizer: there exists  $\underline{l}^* \in \overline{\mathscr{L}}_{\mathcal{G}}$  s.t.  $\Gamma(\mathcal{G}; \underline{l}^*)$  is an equilateral mandarin and

$$k_1[\Gamma(\mathcal{G}; \underline{l})] = k_1[\Gamma(\mathcal{G}; \underline{l}^*)].$$

## Proof ingredients.

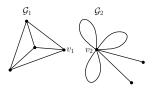
- A supremizer is a critical point of some  $\mathscr{L}_{\hat{G}}$  ( $\hat{\mathcal{G}}$  maybe different than  $\mathcal{G}$ ).
- $\forall e \; \frac{\partial}{\partial l_e} \left( k^2 \right) = \left( f'^2 + k^2 f^2 \right) \Big|_e$  where f eigenfunction which corresponds to k.
- This implies restrictions on eigenfunction derivatives.
- Courant nodal domain theorem f has exactly two nodal domains.

Supremizers

## Gluing graphs - Vertex connectivity one

Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs, and  $v_i$  (i = 1, 2) be a vertex of  $\mathcal{G}_i$ . Let  $\mathcal{G}$  be the graph obtained by identifying (gluing)  $v_1$  and  $v_2$ . If we know the supremizers  $\Gamma_1$ ,  $\Gamma_2$  of  $\mathcal{G}_1$ ,  $\mathcal{G}_2$ ,

can we tell the supremizer of  $\mathcal{G}$ ?



### **Corollary 6.**

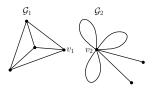
Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs. Let  $\mathcal{G}$  obtained by identifying two non-leaf vertices  $v_1$  and  $v_2$ If the (unique) supremizer of  $\mathcal{G}_i$  is the "equilateral" stower with  $E_p^{(i)}$  petals and  $E_l^{(i)}$  leaves, such that  $E_p^{(i)} + E_l^{(i)} \ge 2$ , then the (unique) supremizer of  $\mathcal{G}$  is an "equilateral" stower with  $E_p^{(1)} + E_p^{(2)}$  petals and  $E_l^{(1)} + E_l^{(2)}$  leaves.

Supremizers

## Gluing graphs - Vertex connectivity one

Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs, and  $v_i$  (i = 1, 2) be a vertex of  $\mathcal{G}_i$ . Let  $\mathcal{G}$  be the graph obtained by identifying (gluing)  $v_1$  and  $v_2$ . If we know the supremizers  $\Gamma_1$ ,  $\Gamma_2$  of  $\mathcal{G}_1$ ,  $\mathcal{G}_2$ ,

can we tell the supremizer of  $\mathcal{G}$ ?



#### Yes

### **Corollary 6**.

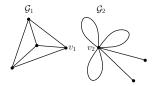
Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs. Let  $\mathcal{G}$  obtained by identifying two non-leaf vertices  $v_1$  and  $v_2$ If the (unique) supremizer of  $\mathcal{G}_i$  is the "equilateral" stower with  $E_p^{(i)}$  petals and  $E_l^{(i)}$  leaves, such that  $E_p^{(i)} + E_l^{(i)} \ge 2$ , then the (unique) supremizer of  $\mathcal{G}$  is an "equilateral" stower with  $E_p^{(1)} + E_p^{(2)}$  petals and  $E_l^{(1)} + E_l^{(2)}$  leaves.

Supremizers

## Gluing graphs - Vertex connectivity one

Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs, and  $v_i$  (i = 1, 2) be a vertex of  $\mathcal{G}_i$ . Let  $\mathcal{G}$  be the graph obtained by identifying (gluing)  $v_1$  and  $v_2$ . If we know the supremizers  $\Gamma_1$ ,  $\Gamma_2$  of  $\mathcal{G}_1$ ,  $\mathcal{G}_2$ ,

can we tell the supremizer of  $\mathcal{G}$ ?



Yes (under some conditions on  $k_1(\Gamma_1),\ k_1(\Gamma_2)$  )

For brevity, skip here the theorem and move on to its corollaries.

### Corollary 6.

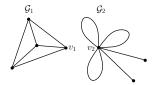
Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs. Let  $\mathcal{G}$  obtained by identifying two non-leaf vertices  $v_1$  and  $v_2$ If the (unique) supremizer of  $\mathcal{G}_i$  is the "equilateral" stower with  $E_p^{(i)}$  petals and  $E_l^{(i)}$  leaves, such that  $E_p^{(i)} + E_l^{(i)} \ge 2$ , then the (unique) supremizer of  $\mathcal{G}$  is an "equilateral" stower with  $E_p^{(1)} + E_p^{(2)}$  petals and  $E_l^{(1)} + E_l^{(2)}$  leaves.

Supremizers

## Gluing graphs - Vertex connectivity one

Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs, and  $v_i$  (i = 1, 2) be a vertex of  $\mathcal{G}_i$ . Let  $\mathcal{G}$  be the graph obtained by identifying (gluing)  $v_1$  and  $v_2$ . If we know the supremizers  $\Gamma_1$ ,  $\Gamma_2$  of  $\mathcal{G}_1$ ,  $\mathcal{G}_2$ ,

can we tell the supremizer of  $\mathcal{G}$ ?



Yes (under some conditions on  $k_1(\Gamma_1)$ ,  $k_1(\Gamma_2)$ )

For brevity, skip here the theorem and move on to its corollaries.

### Corollary 6.

Let  $\mathcal{G}_1, \mathcal{G}_2$  be discrete graphs. Let  $\mathcal{G}$  obtained by identifying two non-leaf vertices  $v_1$  and  $v_2$ . If the (unique) supremizer of  $\mathcal{G}_i$  is the "equilateral" stower with  $E_p^{(i)}$  petals and  $E_l^{(i)}$  leaves, such that  $E_p^{(i)} + E_l^{(i)} \ge 2$ , then the (unique) supremizer of  $\mathcal{G}$  is an "equilateral" stower with  $E_p^{(1)} + E_p^{(2)}$  petals and  $E_l^{(1)} + E_l^{(2)}$  leaves.

# Gluing graphs - Corollaries

### Corollary 7.

Let  $\mathcal{G}$  be a stower with  $E_p + E_l \geq 2$  and  $(E_p, E_l) \neq (1, 1)$ . Then a maximizer is the "equilateral" stower graph with spectral gap  $\pi \left(E_p + \frac{E_l}{2}\right)$ . This maximizer is unique for  $(E_p, E_l) \notin \{(2, 0), (1, 2)\}$ .

### Proof idea.

Prove the statement for "small" stowers. Then glue them to construct any stower.

Recall

**Proposition 4**:

Let  $\mathcal{G}$  be a graph with E edges, out of which  $E_I$  are leaves.

If  $(E, E_l) \notin \{(1, 1), (1, 0), (2, 1)\}$  then  $\forall \underline{l} \in \mathscr{L}_{\mathcal{G}}, \quad k_1[\sqcap (\mathcal{G}; \underline{l})] \leq \pi \left(E - \frac{E_l}{2}\right).$ 

Assuming  $(E, E_l) \notin \{(2, 0), (3, 2)\}$  equality above implies  $\Gamma(\mathcal{G}; \underline{I})$  is

either an equilateral mandarin  $(E_l = 0)$  or an equilateral stower  $(E_l \ge 0)$ .

We use Corollary 7 in its proof.

# Gluing graphs - Corollaries

### Corollary 7.

Let  $\mathcal{G}$  be a stower with  $E_p + E_l \geq 2$  and  $(E_p, E_l) \neq (1, 1)$ . Then a maximizer is the "equilateral" stower graph with spectral gap  $\pi \left(E_p + \frac{E_l}{2}\right)$ . This maximizer is unique for  $\left(E_p, E_l\right) \notin \{(2, 0), (1, 2)\}$ .

### Proof idea.

Prove the statement for "small" stowers. Then glue them to construct any stower.

#### Recall

```
Proposition 4:
```

Let  $\mathcal{G}$  be a graph with E edges, out of which  $E_I$  are leaves.

If 
$$(E, E_l) \notin \{(1, 1), (1, 0), (2, 1)\}$$
 then  $\forall \underline{l} \in \mathscr{L}_{\mathcal{G}}, \quad k_1[\Gamma(\mathcal{G}; \underline{l})] \leq \pi \left(E - \frac{E_l}{2}\right).$ 

Assuming  $(E, E_l) \notin \{(2, 0), (3, 2)\}$  equality above implies  $\Gamma(\mathcal{G}; \underline{I})$  is

either an equilateral mandarin  $(E_I = 0)$  or an equilateral stower  $(E_I \ge 0)$ .

We use Corollary 7 in its proof.

# Gluing graphs - Corollaries

### Corollary 7.

Let  $\mathcal{G}$  be a stower with  $E_p + E_l \geq 2$  and  $(E_p, E_l) \neq (1, 1)$ . Then a maximizer is the "equilateral" stower graph with spectral gap  $\pi \left(E_p + \frac{E_l}{2}\right)$ . This maximizer is unique for  $(E_p, E_l) \notin \{(2, 0), (1, 2)\}$ .

### Proof idea.

Prove the statement for "small" stowers. Then glue them to construct any stower.

#### Recall

#### Proposition 4:

Let  ${\mathcal G}$  be a graph with E edges, out of which  $E_I$  are leaves.

If 
$$(E, E_I) \notin \{(1, 1), (1, 0), (2, 1)\}$$
 then  $\forall \underline{l} \in \mathscr{L}_{\mathcal{G}}, \quad k_1[\Gamma(\mathcal{G}; \underline{l})] \leq \pi \left(E - \frac{E_I}{2}\right)$ .

Assuming  $(E,E_l)\notin\{(2,0)\,,(3,2)\}$  equality above implies  $\Gamma\left(\mathcal{G};\ \underline{l}\right)$  is

either an equilateral mandarin  $(E_l = 0)$  or an equilateral stower  $(E_l \ge 0)$ .

We use Corollary 7 in its proof.

| Introduction | Infimizers | Supremizers | Summary & Conjectur |
|--------------|------------|-------------|---------------------|
|              |            |             |                     |
|              |            |             |                     |
|              | ~          |             |                     |

- Optimization problem fully solved for infimizers.
- Supremizers
  - Improved upper bounds by conditioning on number of leaves,  $k_1 \leq \pi \left(E - \frac{E_l}{2}\right)$  (global) and  $k_1 \leq \pi \frac{E_l}{2}$  (for trees).
  - Simple spectral gaps are never better than that of the mandarin.
  - Construct supremizer by gluing known supremizers.



- Optimization problem fully solved for infimizers.
- Supremizers
  - Improved upper bounds by conditioning on number of leaves,  $k_1 \leq \pi \left(E \frac{E_l}{2}\right)$  (global) and  $k_1 \leq \pi \frac{E_l}{2}$  (for trees).
  - ▶ Simple spectral gaps are never better than that of the mandarin.
  - Construct supremizer by gluing known supremizers.



- Optimization problem fully solved for infimizers.
- Supremizers
  - Improved upper bounds by conditioning on number of leaves,  $k_1 \leq \pi \left(E \frac{E_l}{2}\right)$  (global) and  $k_1 \leq \pi \frac{E_l}{2}$  (for trees).
  - ▶ Simple spectral gaps are never better than that of the mandarin.
  - Construct supremizer by gluing known supremizers.



- Optimization problem fully solved for infimizers.
- Supremizers
  - Improved upper bounds by conditioning on number of leaves,  $k_1 \leq \pi \left(E \frac{E_l}{2}\right)$  (global) and  $k_1 \leq \pi \frac{E_l}{2}$  (for trees).
  - ▶ Simple spectral gaps are never better than that of the mandarin.
  - Construct supremizer by gluing known supremizers.



- Optimization problem fully solved for infimizers.
- Supremizers
  - Improved upper bounds by conditioning on number of leaves,  $k_1 \leq \pi \left(E \frac{E_l}{2}\right)$  (global) and  $k_1 \leq \pi \frac{E_l}{2}$  (for trees).
  - ▶ Simple spectral gaps are never better than that of the mandarin.
  - Construct supremizer by gluing known supremizers.

Infi mizers

Supremizers

Summary & Conjectures

## Summary

## Supremizer candidates are stowers and mandarins (are there any others?) ⇒ lower bounds on supremal spectral gap

Getting to a stower gives  $\pi\left(\beta + \frac{E_i}{2}\right)$ , where  $\beta := E - V + 1$  is the graph's first Betti number.

Getting to a mandarin:

Partition vertices  $V = V_1 \cup V_2$ .

 $E(V_1, V_2) := \#$  of edges connecting  $V_1$  to  $V_2$ .

Maximal spectral gap among all mandarins is  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$ . (Cheeger-like constant)

Compare  $\pi\left(\beta + \frac{E_l}{2}\right)$  (stower) with  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$  (mandarin).

 $E(V_1, V_2) = \beta + 1 - (\beta_1 + \beta_2)$ , where  $\beta_i$  is the Betti number of  $V_i$  graph.

If  $E_l \leq 1$  then mandarin wins if and only if we find  $\beta_1 = \beta_2 = 0$ .

If  $E_l \ge 2$  then mandarin never wins (possibility for a tie).

Infimizers

Supremizers

Summary & Conjectures

## Summary

Supremizer candidates are stowers and mandarins (are there any others?) ⇒ lower bounds on supremal spectral gap

Getting to a stower gives  $\pi\left(\beta + \frac{E_i}{2}\right)$ , where  $\beta := E - V + 1$  is the graph's first Betti number.

Getting to a mandarin:

Partition vertices  $V = V_1 \cup V_2$ .

 $E(V_1, V_2) := \#$  of edges connecting  $V_1$  to  $V_2$ .

Maximal spectral gap among all mandarins is  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$ . (Cheeger-like constant)

Compare  $\pi\left(\beta + \frac{E_l}{2}\right)$  (stower) with  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$  (mandarin).

 $E(V_1, V_2) = \beta + 1 - (\beta_1 + \beta_2)$ , where  $\beta_i$  is the Betti number of  $V_i$  graph.

If  $E_l \leq 1$  then mandarin wins if and only if we find  $\beta_1 = \beta_2 = 0$ .

If  $E_l \ge 2$  then mandarin never wins (possibility for a tie).



Infimizers

Supremizers

Summary & Conjectures

## Summary

Supremizer candidates are stowers and mandarins (are there any others?) ⇒ lower bounds on supremal spectral gap

Getting to a stower gives  $\pi \left(\beta + \frac{E_l}{2}\right)$ , where  $\beta := E - V + 1$  is the graph's first Betti number. Getting to a mandarin: Partition vertices  $V = V_1 \cup V_2$ .  $E(V_1, V_2) := \#$  of edges connecting  $V_1$  to  $V_2$ . Maximal spectral gap *among all mandarins is*  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$ . (Cheeger-like constant)

Compare  $\pi\left(\beta + \frac{E_l}{2}\right)$  (stower) with  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$  (mandarin).  $E(V_1, V_2) = \beta + 1 - (\beta_1 + \beta_2)$ , where  $\beta_i$  is the Betti number of  $V_i$  graph. If  $E_l \leq 1$  then mandarin wins if and only if we find  $\beta_1 = \beta_2 = 0$ . If  $E_l > 2$  then mandarin never wins (possibility for a tie).

Infimizers

Supremizers

Summary & Conjectures

## Summary

Supremizer candidates are stowers and mandarins (are there any others?) ⇒ lower bounds on supremal spectral gap

Getting to a stower gives  $\pi \left(\beta + \frac{E_l}{2}\right)$ , where  $\beta := E - V + 1$  is the graph's first Betti number. Getting to a mandarin:  $E(V_1, V_2) = 4$ Partition vertices  $V = V_1 \cup V_2$ .  $E(V_1, V_2) := \#$  of edges connecting  $V_1$  to  $V_2$ . Maximal spectral gap among all mandarins is  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$ . (Cheeger-like constant) Compare  $\pi\left(\beta + \frac{E_l}{2}\right)$  (stower) with  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$  (mandarin).  $E(V_1, V_2) = \beta + 1 - (\beta_1 + \beta_2)$ , where  $\beta_i$  is the Betti number of  $V_i$  graph.

If  $E_l \leq 1$  then mandarin wins if and only if we find  $\beta_1 = \beta_2 = 0$ .

If  $E_l \ge 2$  then mandarin never wins (possibility for a tie).

Infimizers

Supremizers

### Summary

Getting to a stower gives  $\pi\left(\beta + \frac{E_i}{2}\right)$ , where  $\beta := E - V + 1$  is the graph's first Betti number.

Getting to a mandarin:

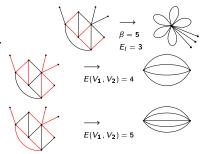
Partition vertices  $V = V_1 \cup V_2$ .

 $E(V_1, V_2) := \#$  of edges connecting  $V_1$  to  $V_2$ .

Maximal spectral gap among all mandarins is  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$ . (Cheeger-like constant)

Compare  $\pi\left(\beta + \frac{E_l}{2}\right)$  (stower) with  $\pi \cdot \max_{V_1, V_2} E(V_1, V_2)$  (mandarin).  $E(V_1, V_2) = \beta + 1 - (\beta_1 + \beta_2)$ , where  $\beta_i$  is the Betti number of  $V_i$  graph. If  $E_l \leq 1$  then mandarin wins if and only if we find  $\beta_1 = \beta_2 = 0$ . If  $E_l \geq 2$  then mandarin never wins (possibility for a tie).

Leads to conjectures....



# $\operatorname{Conjectures}$

- Supremizer is either a mandarin or a stower.
- Supremum is obtained when order of symmetry group is maximized.
- Supremum is obtained when multiplicity of spectral gap is maximized.

# $\operatorname{Conjectures}$

- Supremizer is either a mandarin or a stower.
- Supremum is obtained when order of symmetry group is maximized.
- Supremum is obtained when multiplicity of spectral gap is maximized.

# $\operatorname{Conjectures}$

- Supremizer is either a mandarin or a stower.
- Supremum is obtained when order of symmetry group is maximized.
- Supremum is obtained when multiplicity of spectral gap is maximized.

## Quantum Graphs which Optimize the Spectral Gap



#### Ram Band

#### Technion - Israel Institute of Technology

Joint work with Guillaume Lévy, Université Pierre et Marie Curie, Paris (arXiv:1608.00520)

QMath 13, GeorgiaTech, Atlanta - October 2016